سفارش تبلیغ
صبا ویژن
وبلاگ تخصصی جوان نوین
   مشخصات مدیر وبلاگ
 
  پیوند دوستان
 
    آمارو اطلاعات

بازدید امروز : 3
بازدید دیروز : 21
کل بازدید : 277929
کل یادداشتها ها : 254

طول ناحیه در قالب بزرگتر از حد مجاز
نوشته شده در تاریخ 90/9/11 ساعت 4:59 ع توسط مدیر وبلاگ : احسان نصیریان


 

امواج رادار چیزی است که در تمام اطراف ما وجود دارد، اگر چه دیده نمی‏شود. مرکز کنترل ترافیک فرودگاهها برای ردیابی هواپیماها چه آنها که بر روی باند فرودگاه قرار دارند و چه آنها که در حال پرواز هستند و هدایت آنها از رادار استفاده می‏کنند. در برخی از کشورها پلیس از رادار برای شناسایی خودروهای با سرعت غیر مجاز استفاده می‏‏کند. ناسا از رادار برای شناسایی موقعیت کرة زمین و دیگر سیارات استفاده می‏کند، همین طور برای دنبال کردن مسیر ماهواره‏ها و فضاپیماها و برای کمک به کشتی‏ها در دریا و مانورهای رزمی از آن استفاده می‏شود. مراکز نظامی نیز برای شناسایی دشمن و یا هدایت جنگ‏افزارهایشان از آن استفاده می‏کنند
چیزی است که در تمام اطراف ما وجوددارد، اگر چه دیده نمی‏شود. مرکز کنترل ترافیک فرودگاهها برای ردیابی هواپیماها چهآنها که بر روی باند فرودگاه قرار دارند و چه آنها که در حال پرواز هستند و هدایتآنها از رادار استفاده می‏کنند. در برخی از کشورها پلیس از رادار برای شناساییخودروهای با سرعت غیر مجاز استفاده می‏‏کند. ناسا از رادار برای شناسایی موقعیت کرةزمین و دیگر سیارات استفاده می‏کند، همین طور برای دنبال کردن مسیر ماهواره‏ها وفضاپیماها و برای کمک به کشتی‏ها در دریا و مانورهای رزمی از آن استفاده می‏شود. مراکز نظامی نیز برای شناسایی دشمن و یا هدایت جنگ‏افزارهایشان از آن استفادهمی‏کنند.

 هواشناسان برای شناسایی طوفانها،تندبادهای دریایی و گردبادها از آن استفاده می‏برند. شما حتی نوعی خاص از رادار رادر مدخل ورودی فروشگاهها می‏بینید که در هنگام قرار گرفتن اشخاص در مقابلشان، دربرا باز می‏کنند. بطور واضح می‏بینید که رادار وسیله‏ای بسیار کاربردی می‏باشد. دراین بخش از مقالات ما به اسرار رادار می‏پردازیم.  
استفاده از رادار عموماً در راستای سههدف زیر می‏باشد:


شناسایی حضور یاعدم حضور یک جسم در فاصله‏ای مشخص – عمدتاً آنچه که شناسایی می‏شود متحرکاست و مانند هواپیما، اما رادار قادر به شناسایی حضور اجسام که مثلاً در زیرزمیننیز مدفون شده‏اند، می‏باشد. در بعضی از موارد حتی رادار می‏تواند ماهیت آنچه را کهمی‏یابد مشخص کند، مثلاً نوع هواپیمایی که شناسایی می‏کند.
شناسایی سرعت آنجسم- دقیقاً همان هدفی که پلیس از آن در بزرگراه‌ها برای کنترل سرعت خودروهااز آن استفاده می‏کند.


جابه‌جاییاجسام – شاتل‏های فضایی و ماهواره‏های دوار بر دور کره زمین از چیزی بهعنوان رادار حفره‏های مجازی برای تهیه نقشه جزئیات، نقشه‏های عوارض جغرافیایی سطحماه و دیگر سیارات استفاده می‏کنند.
تمام این سه عملیات می‏تواند با دوپدیده‏ای که شما در زندگی روزمره با آن آشنائید پیاده شود: «پژواک» و «پدیده داپلر» این دو پدیده به سادگی قابل فهم می‏باشند، چرا که هر روزه شما با آنها در حوزهشنوایی خویش برخوردارید. رادار از این دو پدیده در حوزة امواج رادیویی استفادهمی‏برد.
بگذارید ابتدا با این پدیده در حوزهشنیداری یا صوتی خویش بیشتر آشنا شویم.

پژواک و پدیدهداپلر

پژواک پدیده‏ای است که شما هر روزه با آن برخورد دارید، اگرشما به داخل یک چاه و یا در یک دره فریاد بزنید، پژواک صدای شما چند لحظه بعد بهگوشتان می‏رسد. در واقع شما صدایتان را باز خواهید شنید. پژواک بدین جهت رخ می‏دهدکه بعضی از امواج صدای شما (به این دلیل واژه بعضی را آوردیم که صدای برخی ازحیوانات مانند اردک در فرکانس خاص امواج صدای این حیوان هیچگاه پژواکی ندارد) پس ازبرخورد به یک سطح (که این سطح می‏تواند سطح آب، انتهای چاه یا دیوارة کوه موجود درانتهای دره باشد) به سمت شما باز می‏گردد و گوش شما دوباره آنرا می‏شنود. فاصلهزمانی‌ای که بین فریاد شما تا شنیدن پژواک آن طول می‏کشد با فاصله مکانی بین شما وآن سطح بازگردانندة پژواک ارتباط دارد.


هنگامی که شما به داخل یک چاه فریاد می‏کشید، صدای شما از دهانة چاه به سمت انتهای چاه رفته و پس از برخورد با سطح آب انتهای چاه منعکس می‏شود. در این حالت اگر شما سرعت صدا را به طور دقیق بدانید، با اندازه‏گیری زمان رفت‏وبرگشت صدا می‏توانید عمق چاه را حساب کنید

 
پدیدة داپلر نیز بسیار معمول است. شماهر روز (بدون اینکه حتی از آن درکی داشته باشید) آن را تجربه می‏کنید. این پدیدهزمانی رخ می‏دهد که یک مولد امواج صوتی و یا منعکس کننده امواج صوتی دارای حرکتباشد. مثلاً یک خودرو که در حال بوق زدن است. حالت تشدید شدة پدیدة داپلر در شکستن «دیوار صوتی» رخ می‏دهد. در این جا به درک این پدیده می‏پردازیم (ممکن است شما برایاینکه بهتر این پدیده را درک کنید کنار یک اتوبان آن را تجربه کنید) فرض کنید کهخودرویی با سرعت 100 کیلومتر بر ساعت در حال بوق زدن به سمت شما در حرکت باشد. تازمانی‌که خودرو در حال نزدیک شدن به شماست فقط یک نت صوتی را می‏شنوید (در واقع یکفرکانس ثابت، در شماره گذشته راجع به فرکانس صحبت کردیم)، اما هنگامی که خودرو بهکنار شما می‏رسد صدای بوق ناگهان تغییر کرده و به عبارتی «بم» تر می‏شود و بعد ازلحظه‏ای که از شما عبور کرد (و اگر همچنان راننده در حال بوق زدن بود) ناگهان صدابم‏تر نیز می‏شود، در صورتی که شما می‏دانید که صدای بوق همیشه ثابت است، کما اینکهراننده داخل خودرو در تمام مدت بوق زدن فقط نت واقعی بوق را می‏شنود. این تغییراتصوت شنیده شده توسط شما بوسیلة پدیدة داپلر قابل توضیح است. اما آنچه که رخ می‏دهد: «سرعت صوت» مقداری ثابت است، برای ساده‏تر شدن محاسباتمان سرعت صورت را 1000کیلومتردر ساعت در نظر بگیرید. (سرعت واقعی صوت وابسته به دما، فشار هوا و رطوبت هواست.) فرض کنید که خودرویی در فاصله یک کیلومتری شما قرار دارد (بصورت غیر متحرک). رانندهداخل خودرو به مدت یک دقیقه شستی بوق را فشرده تا صدا به گوش ما برسد، این صدا باسرعتی برابر با 1000کیلومتر بر ساعت به سمت شما حرکت می‏کند، بعد از 6 ثانیه ازفشرده شدن شستی بوق توسط راننده، شما چه صدایی را خواهید شنید؟ (این 6 ثانیه درواقع مدت زمانی است که طول می‏کشد صدا به شما برسد) و به مدت یک دقیقه پس از آن چهمی‏شنوید؟ مسلماً صدای بوق را بدون هیچ تغییری.


پدیدهداپلر: شخص پشت سر خودرویی را با بسامدی (فرکانس) پایین‏تر و بم‏تر از آنچهکه راننده داخل خودرو و در حال حرکت می‏شنود. راننده از شخصی که خودرو به سمت آن درحال حرکت است صدا را با نت پایین‏تر می‏شنود.


حال فرض کنید خودرو از فاصله‏ای دور باسرعتی معادل 100 کیلومتر بر ساعت به سمت شما حرکت کند، همان راننده با همان خودرو وبا همان صدای بوق و به مدت همان یک دقیقه شستی بوق را فشارمی‌دهد می‏شود. جالب است! شما صدای بوق را فقط به مدت 54 ثانیه خواهید شنید آن هم به خاطر حرکت خودرو رخ دادهاست.


در واقع تعداد اعوجاجهای موج صوتی ثابتبوده ولی در زمان کوتاه‏تری به سمت شما آمده و از آنجائی‌که تعریف فرکانس تعدادنوسانات موج در واحد زمان است لذا اگر قبلاً این نوسانات را 1 بر 60 ثانیه تقسیم‏کردیم و فرکانس F1 بدست می‏آمد، حال باید این تعداد نوسانات را بر 54 تقسیم کنیمکه مطمئناً عددی بزرگتر خواهد شد. این عدد بزرگتر یا فرکانس بالاتر یعنی صدای «زیر»تر. همین توجیه نیز برای خودرویی که از شما وجود دارد، در این حالت شما 64ثانیه صدای بوق را می‏شنوید که فرکانس حاصله در این حالت کمتر (یا صدای بم‏تر) خواهد بود.


شکستن دیوارصوتی


اینک که ما در حال بحث بر روی رابط صداو سرعت هستیم می‏توانیم در مورد شکستن دیوار صوتی هم صحبت کنیم. فرض کنید آنخودرویی که صحبتش بود با سرعتی معادل 100 کیلومتر در ساعت به‌ سوی شما، آن هم درحال بوق زدن، حرکت کند، امواج صوتی چون سرعتی معادل همان سرعت خودرو را دارند، لذانه از آن جلو زده و نه عقب می‏مانند، لذا در کل مدت حرکت خودرو شما صدایی رانخواهید شنید. اما در لحظه‏ای که خودرو به شما می‏رسد، تمام امواج صوتی جمع شده ویکجا شما آنها را می‏شنوید. صدای بسیار بلند و با فرکانس بسیار بالا.


این صدا توسط هواپیمایی که قادرند باسرعتی معادل با سرعت صوت حرکت کنند می‏تواند موجبات وحشت بسیاری از افرادی که درزیر مسیر این هواپیما قرار دارند بوجود آورده قدرت این صدا به قدری است که می‏تواندشیشه‏ها را بشکند.


چنین اتفاقی برای قایقها نیز رخ می‏دهد. منتهی در این میان تجمع امواج آب که سرعتی در حدود سرعت این قایقها دارند. این موجمتمرکز بصورت V شکل از جلو قایق به طرفین حرکت می‏کند که زاویه این موج توسط سرعتقایق کنترل می‏شود. در واقع تجمع امواجی که قایق در هر لحظه تولید می‏کند و هر لحظهبر آن می‏افزاید نیز توسط پدیده داپلر قابل توضیح است.
شما می‏توانید با استفاده از ترکیبی از پژواک و پدیده داپلر بصورتی که در زیر می‏آید استفاده کنید

 
در محلی که ایستاده‏ایدبه سمت خودرویی که در حال حرکت (به سمت شما یا در خلاف جهت) اصواتی را بفرستید. بعضی از این اصوات پس از برخورد با خودرو به سمت شما باز می‏گردند. (پژواک) ازآنجایی که خودرو در حال حرکت است لذا اصوات منعکس شده یا به هم فشرده می‏شوند (درحالی که خودرو به سمت شما می‏آید) و یا از هم باز می‏شوند. در حالت حرکت مخالف درهر دو صورت شما می‏توانید با مقایسه موج فرستاده شده و بازگشته سرعت خودرو را بدستآورید.


مفهومرادار:


دیدیم که می‏توان با استفاده از مفهومپژواک به فاصله اجسام دور پی برد و همین طور با استفاده از تغییر پدیده داپلر بهسرعت این جسم پی ببریم. با توجه به این مفاهیم می‏توان فهمید که رادار صوتی چیست؟این گونه رادار در زیردریایی‏ها و کشتی‏ها کاربرد دارد و همیشه در حال کار است. می‏توان از رادار صوتی در محیط آزاد نیز استفاده کرد، اما بخاطر چند اشکال ریز اینگونه رادار در هوا استفاده نمی‏شود.


- صدا در هوا مسافت زیادی را نمی‏تواندبپیماید…. شاید در حدود 5/1 کیلومتر و یا کمی بیشتر


- هرکسی می‏تواند صدا را بشنود لذااستفاده از صدا در محیط آزاد موجب آزار دیگران می‏شود که البته می‏توان با بالابردن فرکانس صدای مورد استفاده و استفاده از امواج «فراصوت» این مشکل را حل کرد.


- صدای منعکس شده حاصل از پدیده پژواکبسیار ضعیف می‏باشد به طوری که دریافت آن بسیار سخت است.


سمت چپ: آنتن های مجموعه مخابراتی فضاییگلدستون (بخشی از شبکه ارتباطی فضایی ناسا) که به ارتباطات مخابراتی رادیوییفضاپیماهای میان سیاره‏ای ناسا کمک می‏کند.


سمت راست: رادار جست وجوی سطح و هوا کهبر روی نوک دکل یک موشک هدایت شونده قرار گرفته است.


حال بیایید در مورد یک نمونه واقعیراداری که برای شناسایی هواپیماهای در حال پرواز بکار می‏رود صحبت کنیم. سیستمرادار در ابتدا با روشن کردن فرستنده قوی‏اش یک دسته موج رادیویی متراکم در آسمان ودر جهات مختلف پخش می‏کند. این ارسال برای چند میکروثانیه صورت می‏پذیرد، حالفرستنده خاموش شده و گیرنده سیستم رادار مترصد دریافت پژواک امواج که به همراهاطلاعات حاصل از پدیده داپلر نیز هستند می‏ماند.


امواج رادیویی با سرعتی معادل سرعت نورحرکت می‏کنند، تقریباً در هر میکروثانیه 300 متر را در فضا طی می‏کنند؛ حال اگرسیستم رادار مذکور دارای یک ساعت بسیار دقیق و قوی باشد، می‏تواند با دقت بسیاربالایی موقعیت هواپیما را مشخص کند، با استفاده از روشهای خاص پردازش سیگنال برایتحلیل پدیده داپلر بر روی موجهای برگشتی می‏توان به دقت سرعت هواپیما را مشخص کرد.


آنتن رادار یک دسته کوچک اما قدرتمندپالس امواج رادیویی از یک فرکانس مشخص را در فضا می‏فرستند. هنگامی که امواج به یکجسم برخورد می‏کنند منعکس شده و در اثر پدیده داپلر فشرده‏تر یا گسسته‏تر می‏شوند. همان آنتن وظیفه دریافت امواج منعکس شده را که البته بسیار کمتر از امواج ارسالیهستند بر عهده دارد.


در رادارهای زمینی قضیه خیلی پیچیده‏تراز رادارهای هوایی است، هنگامی که یک رادار پلیس به ارسال پالس موج رادیوییمی‏پردازد بخاطر وجود اجسام بسیار در سر راهش مانند نرده‏ها، پلها، تپه‏ها وساختمانها پژواکهای بسیاری را دریافت می‏دارد، اما از آنجایی که تمام این اجسامثابت هستند به جزء خودروها مورد نظر، لذا سیستم رادار خودروهای پلیس از میان امواجمنعکس شده، فقط آنهایی را انتخاب می‏کند که در آنها پدیده داپلر قابل شناسایی است،آن هم به اندازه‏‏ای که جسم متحرک اضافه سرعت داشته باشد، در ضمن آنتن این رادارهابسیار دهانه تنگی دارند، چرا که فقط بر روی یک خودرو تنظیم می‏شوند.


البته امروزه پلیسها در برخی کشورها از جمله کشور خودمان از تکنولوژی لیزر برای تعیین سرعت خودروها در بزرگراهها استفاده می‏کنند. تکنولوژی به نام «لیدار» شناخته می‏شود. در این مدل بجای امواج رادیویی از اشعه نوری متمرکز (یا همان لیزر) استفاده می‏شود

 



  



نوشته شده در تاریخ 90/9/11 ساعت 4:57 ع توسط مدیر وبلاگ : احسان نصیریان


لکترومایوگرافی ( EMG ) مطالعه عملکرد عضله از طریق تحلیل سیگنالهای الکتریکی تولید شده حین انقباضات عضلانی است. EMG اغلب به طور نادرستی بوسیله پزشکان و محققان به کار گرفته می شود. در بیشتر موارد حتی الکترومایوگرافرهای با تجربه نیز نمی توانند اطلاعات کافی و جزئیات مورد نظر را از پروتکل به دست آورند و لذا محققان دیگر مجازند که کارهای آنها را تکرار کنند. این بخش برخی از این مشکلات را روشن می سازد و اساس لازم برای انجام مطالعات EMG به عنوان بخشی از تحقیقات بوسیله محققین را به خواننده می دهد.
EMG اندازه گیری سیگنال الکتریکی همراه با تحریک عضله است که می تواند شامل عضلات ارادی و غیر ارادی شود. وضعیت EMG انقباضات عضله ارادی به میزان کشش بستگی دارد. واحد عملکردی انقباض عضله یک واحد حرکتی ( motor unit ) است که متشکل است از یک نورون حرکتی آلفا منفرد و تمام فیبرهایی که از آن منشعب می شوند. وقتی پتانسیل عمل  ( impulse ) عصب حرکتی که فیبر را تغذیه می کند به آستانه دپلاریزاسیون برسد فیبر عضله منقبض می شود. دپلاریزاسیون باعث ایجاد میدان الکترومغناطیسی می شود و این پتانسیل به عنوان ولتاژ اندازه گرفته می شود. دپلاریزاسیون که در طول غشا عضله منتشر می شود یک پتانسیل عمل عضله است. پتانسیل عمل واحد حرکتی ( m.u ) مجموع پتانسیل عملهای منفرد تمامی فیبرهای یک واحد حرکتی است. بنابراین سیگنال EMG جمع جبری تمام پتانسیل عملهای واحدهای حرکتی موجود در ناحیه ای است که الکترود در آنجا قرار گرفته است. ناحیه قرار گرفتن الکترود معمولاً شامل بیش از یک واحد حرکتی است زیرا فیبرهای عضلانی واحدهای حرکتی مختلف در تمام طول عضله در ترکیب با هم قرار دارند . هر بخش از عضله می تواند حاوی فیبرهای متعلق به حدود 20 تا 50 واحد حرکتی باشد.

یک واحد حرکتی مستقل می تواند دارای 3 تا 2000 فیبر عضله باشد. عضلاتی که پنج حرکت را در کنترل دارند از تعداد فیبر عضلانی کمتری به ازای هر واحد حرکتی برخوردارند. ( معمولاً کمتر از 10 فیبر به ازای هر واحد حرکتی ). در مقابل عضلاتی که محدوده وسیعی از حرکات را در کنترل دارند دارای 100 تا 1000 فیبر در هر واحد حرکتی می باشند. در خلال انقباضات عضلانی ترتیب خاصی وجود دارد به این صورت که واحدهای حرکتی با فیبر عضلانی کمتر در ابتدا و سپس واحدهای حرکتی دارای فیبرهای عضلانی بیشتر منقبض می شوند. تعداد واحدهای حرکتی در عضلات در بدن متغیر است. دو نوع اصلی EMG داریم : بالینی ( که گاهی مواقع EMG تشخیصی نامیده می شود ) و Kine siological  EMG تشخیصی که معمولاً‌ به وسیله پزشک یا متخصص اعصاب انجام می شود, مطالعه مشخصات پتانسیل عمل واحد حرکتی از نظر مدت و دامنه است و برای کمک به تشخیص آسیب شناسی اعصاب انجام می شود با این روش همچنین می توان دشارژهای خودبخودی عضله در حال استراحت را ارزیابی کرد و یا فعالیت یک واحد حرکتی منفرد را ایزوله نمود. Kine Siological EMG نوعی EMG است که با تحلیل حرکت مرتبط است . این نوع از EMG رابطه بین عملکرد عضله با حرکت بخشهای مختلف بدن را ارزیابی می کند و زمان بندی فعالیت عضله با حرکت را مورد بررسی قرار می دهد. به علاوه بسیاری از مطالعات در تلاشند تا قدرت عضله و نیروی تولید شده در عضله را بررسی کنند.

رابطه ای بین EMG با بسیاری از متغیرهای بیومکانیکی وجود دارد. با در نظر گرفتن انقباضات ایزومتریک, رابطه ای مثبت در افزایش کشش عضله و دامنه سیگنال ثبت شده EMG وجود دارد. اگر چه یک زمان تاخیر وجود دارد و به این دلیل است که دامنه EMG به صورت مستقیم با build-up کشش ایزومتریک در تطابق نیست. برای تخمین قدرت تولید شده از روی سیگنال EMG می بایست دقت زیادی کرد چون اعتبار رابطه نیرو با دامنه وقتی تعداد زیادی عضله از یک مفصل منشعب شده اند یا یک عضله به مفاصل متعددی وصل است خیلی قطعی نیست. در بررسی فعالیت یک عضله با توجه به انقباضات  Concentric و eccentric مشخص می شود که انقباضات eccentric نسبت به انقباضات concentric در مقابل نیروی وارده برابر فعالیت کمتری در عضله تولید می کنند. همراه با خستگی عضله, کاهش در میزان کشش عضله اغلب همراه با دامنه ثابت یا حتی بیشتر در فعالیت عضله مشاهده می شود. بخش پر فرکانس سیگنال همراه با خستگی فرد افت می کند و می تواند به صورت کاهش در فرکانس مرکزی سیگنال عضله دیده شود. در خلال حرکت رابطه ای تقریبی بین EMG و سرعت حرکت مشاهده می شود. رابطه ای معکوس بین قدرت انقباض تولید شده بوسیله انقباض Concentric و سرعت حرکت وجود دارد در حالیکه eccentric توانایی حمل وزنه بیشتر با سرعت بیشتری را دارد. به عنوان مثال اگر وزنه ای بزرگ و سنگین را به سرعت ولی با کنترل پائین ببرید آن وزنه را با استفاده از انقباض eccentric پائین برده اید. شما قادر نخواهید بود که وزنه را با همان سرعت پائین بردن, بالا ببرید ( انقباض Concentric ). نیروی تولید شده لزوماً بیشتر نخواهد بود اما شما توانستید وزنه بیشتری را حمل کنید و فعالیت EMG در عضلات مورد استفاده کمتر بوده است. بنابراین رابطه ای معکوس برای انقباضات Concentric و رابطه ای مثبت برای انقباضات eccentric از نظر سرعت حرکت وجود دارد. از نقطه نظر ثبت سیگنال EMG, دامنه پتانسیل عمل واحد حرکتی به عوامل مختلفی بستگی دارد نظیر : قطر فیبر عضله, فاصله  بین فیبر عضله فعال و محل آشکار سازی ( ضخامت چربی بافت ) و خصوصیات فیلترینگ خود الکترود. هدف اصلی بدست آوردن سیگنالی بدون نویز است        ( مثلا ‌ً آرتی فکت حرکتی, آرتی فکت Hz 60 و ... ) بنابراین نوع الکترود و خصوصیات تقویت کننده نقش حیاتی در بدست آوردن سیگنال بدون نویز ایفا می کند.
برای Kine Siological EMG دو نوع اصلی الکترود وجود دارد: سطحی و سیم باریک الکترودهای سطحی خود به دو گروه تقسیم می شوند. گروه اول الکترودهای فعال که در سطح آنها آمپلی  فایر وجود دارد و امپدانس را بهبود می بخشد. ( برای این الکترودها نیازی به استفاده از ژل نیست و این الکترودها آرتی فکت حرکتی را کاهش و نسبت سیگنال به نویز را افزایش می دهند ). الکترود دیگر, الکترود غیر فعال ( Passive ) است که سیگنال EMG را بدون آمپلی فایر درونی آشکارسازی می کنند و لذا کاهش تمام مقاومتهای پوست تا حد ممکن برای آن اهمیت می یابد ( لذا نیاز به ژل هادی و آماده سازی پوست دارند ).
با الکترود غیر فعال نسبت سیگنال به نویز کاهش یافته و بسیاری از آرتی فکتهای حرکتی با تقویت سیگنال اصلی, تقویت می شوند. مزیتهای الکترود سطحی این است که کاربرد آنها بدون درد است, قابلیت تکرار بیشتری دارند, کاربرد آنها ساده است و برای کاربردهای حرکتی مناسب است. عدم مزیت الکترودهای سطحی این است که ناحیه آشکارسازی آنها وسیع بوده و لذا پتانسیلهایی از عضلات کناری نیز ثبت می کنند. به علاوه این الکترودها تنها برای عضلات سطحی کاربرد دارند.
الکترودهای سیم باریک برای ورود به درون عضله به یک سوزن نیاز دارند. مزایای الکترودهای سوزنی ( سیم باریک Fine-wire ) عبارتند از : پهنای باند وسیع, ناحیه آشکارسازی اختصاصی تر, توانایی مطالعه عضلات عمقی, جداسازی بخشهای مشخص عضلات بزرگ و توانایی مطالعه عضلات کوچک که آشکارسازی آنها به دلیل اثر عضلات کناری ( cross-talk ) با الکترودهای سطحی غیر ممکن است. عدم مزیتهای این الکترود اینها می باشند که فرو کردن سوزن باعث ایجاد ناراحتی می شود, ناراحتی باعث افزایش گرفتگی و سفتی در عضله می گردد, برخی مواقع گرفتگی عضله رخ می دهد, الکترودها تکرارپذیری کمتری دارند چون قراردادن مجدد سوزن و سیم نازک در همان محل قبلی در عضله مشکل است. به علاوه ممکن است که فرد برای تعیین دقیق محل الکترود آن را تکان دهد و باعث افزایش ناراحتی بیمار شود. با این وجود برای برخی عضلات مشخص الکترودهای سوزنی تنها امکان برای بدست آوردن اطلاعات می باشند.
تفاوتهای موجود بین نتایج الکترودهای سطحی و سوزنی به دلیل تفاوت در پهنای باند آنهاست. الکترودهای سوزنی دارای فرکانس بالاتری هستند و فعالیت یک واحد حرکتی را نیز ثبت می کنند. پهنای باند آنها بین 2 تا Hz 1000 است در حالیکه پهنای باند الکترودها سطحی بین 10 تا Hz 600 می باشد. صرفنظر از نوع الکترود مورد استفاده, برخی از طراحی های الکترودی می توانند به افزایش نویز ناخواسته کمک کنند. طراحی تک قطبی ساده ترین شکل ممکن است که در آن تنها یک الکترود و یک زمین وجود دارد. با این وجود این طراحی سیگنالهای ناخواسته بیشتری نسبت به سایر روشها جمع آوری می کند. طراحی دو قطبی روشی است که در تحلیل حرکت به طور شایعی به کار می رود. در این طراحی دو الکترود و یک زمین وجود دارد . این روش به این صورت است که در آن سیگنالهای مشترک بین دو الکترود به عنوان نویز در نظر گرفته می شود و حذف می گردند و آنچه بین دو الکترود متفاوت است به عنوان سیگنال مورد نظر نگهداری می شود. این  روش به عنوان سیستم تقویت اختصاصی نامیده می شود و کمتر تحت تاثیر تداخل عضلات کناری یا عمقی قرار دارد. طراحی سوم ترکیب از دو سیستم اختصاصی است. در این سیستم سه الکترود فعال و یک زمین وجود دارد. بنابراین در اینجا دو جفت سیگنال دو قطبی داریم که به صورت اختصاصی تقویت می شوند. این روش ناحیه آشکارسازی کوچک تری دارد و لذا نویز آن از روش دو قطبی کمتر است. این روشهای طراحی الکترودها بسته به سیستم تقویت کننده خریداری شده منحصر به فردند و حداقل یک سیستم دو قطبی مورد نیاز است.
بسیاری دیگر از خصوصیات تقویت کننده ها نیز می بایست مورد توجه قرار گیرند : اولین آنها نسبت سیگنال به نویز است. این نسبتی است بین سیگنالهای مفید به سیگنالهای ناخواسته و معیاری است بر کیفیت سیگنال تقویت شده هر چه این نسبت بیشتر باشد, کاهش نویز بیشتر بوده است. الکترودهایی که روی خود یک پیش تقویت کننده دارند دارای نسبت سیگنال به نویز بسیار بالایی می باشند. بهره تقویت کننده نیز مهم می باشد که عبارت است از مقدار تقویتی که به سیگنال اعمال می شود و می بایست آنقدر باشد که دامنه خروجی به یک ولت برسد . خصوصیت دیگر تقویت کننده پهنای باند است که به صورت محدوده فرکانسهای قابل جمع آوری تقویت کننده تعریف می شود. پهنای باند می بایست هم آنقدر زیاد باشد که فرکانسهای کم آرتی فکت حرکتی را حذف کند و هم آنقدر کم باشد که حداقل تضعیف سیگنال را داشته باشیم. به طور کلی به این معناست که باید در محدوده Hz 600- 0 برای الکترود سطحی و Hz 1000 – 0 برای الکترود سوزنی باشد. استفاده از Nyquest theorem بدین مناست که فرد باید نمونه گیری را در حداقل Hz 1200 برای الکترود سطحی و Hz 2000 برای الکترود سوزنی انجام دهد تا از جمع آوری تمام سیگنالها مطمئن شود. یکبار که سیگنالها ثبت شدند سپس می توان از یک فیلتر بالا گذر 10-15Hz ( High-Pass ) برای حذف آرتی فکت حرکتی استفاده کرد . می بایست این اطمینان فراهم باشد که تمام فیلترهای مورد استفاده دارای انتقال فاز صفر می باشند. توانایی آمپلی فایر اختصاصی در حذف سیگنال حالت عادی, نسبت حذف حالت عادی نامیده می شود. نسبت حذف حالت عادی هر چه بالاتر باشد, حذف سیگنال عادی ( نویز ) بهتر صورت می گیرد. مقدار 10000 ( dB 80 ) مورد نظر و مطلوب است. ورودی و امپدانس سیستم می بایست بیشتر از 12+  10 اهم و جریان بایاس ورودی کم در حدود 50 پیکوآمپر یا کمتر باشد. امپدانس ورودی بالا اجازه می دهد که سیگنالهای زیادی برای تقویت به تقویت کننده بروند. هر سیگنال ورودی کمتر از جریان بایاس ورودی تقویت نخواهد شد. با دانستن این مشخصات فرد قادر خواهد بود که تقویت کننده مناسب برای سیگنال EMG خریداری کند.
همچنین امکان اشتباه ناشی از بورد آنالوگ به دیجیتال نیز وجود دارد. بیشتر بوردها تنها دارای 12-10 بیت بورد هستند و اگر سیستم امکان استفاده از تمام این محدود جمع آوری شده را ندهد مشکل به وجود می آید.
این بدین معناست که اگر جمع آوری شما برای 10± ولت تنظیم شده و شما در حال انجام EMG هستید که محدوده آن بعد از تقویت 1± ولت است, سیستم شما در حالت بهینه عمل نمی کنند و شما دچار مشکل کمی سازی و نمونه گیری هستند. بنابراین فرد باید مطمئن باشد که نرم افزار و سخت افزار خریداری شده امکان بهینه بودن محدود ولتاژ جمع آوری با محدوده آنالوگ به دیجیتال (A-D) را فراهم می کند.
اپراتور EMG می بایست اطلاعات کاملی از آناتومی بدن انسان داشته باشد چون محل و درجاگذاری الکترود بسیار مهم است. در ابتدا این فرد می بایست پوست را به خوبی تمیز نماید تا مقاومت پوست کاهش یابد. همین کار ساده می تواند مقاومت پوست را تا 200% کاهش دهد. برای بسیاری از کاربردهای بالینی EMG , بدنه عضله به عنوان محل قرار دادن الکترود استفاده می شود. با این وجود برای اطمینان از تکرارپذیری نتایج محل خاص قرار گرفتن الکترود, استفاده از نشانه های استخوانی ( Land mark ) ضروری است. کتابهای بسیار زیادی وجود دارند که محلهای دقیق قرار دادن الکترود را توضیح داده اند. روش شایع و پذیرفته شده دیگر برای قرار دادن الکترودها استفاده از نقاط حرکت است ( motor point ). با قرار دادن الکترودها در بدنه عضلات, برخی از مقالات هستند که موقعیت نقاط حرکت معمول را به عنوان نقطه شروع آورده اند و لذا شما می توانید به راحتی با استفاده از یابنده نقطه حرکت, آن نقاط را پیدا کنید. بحث خاص دیگر می بایست در مورد فاصله داخلی الکترود صورت پذیرد. بسیاری از الکترودها دارای فاصله داخلی ثابت هستند. ولی برخی نیز دارای فاصله داخلی متغیر می باشند و لذا فرد می بایست از ثبوت این فاصله در تمامی مراحل کار اطمینان حاصل کند تا مطمئن شود که الکترود بر روی همان فیبر عضله قرار دارد. منابع زیادی برای نویز وجود دارد. ( نویز: هر سیگنال ناخواسته ای که به همراه سیگنال های مورد نظر جمع آوری می شود). برخی از این منابع عبارتند از : میدان الکترواستاتیک ( پوست ), میدان الکترومغناطیس ( سیمهای برق ), آرتی فکتهای حرکتی ناشی از نقص الکترود در سطح پوست یا نقص در سیم, واکنشهای غیر ارادی ( clonus ) و هرگونه وسیله الکتریکی دیگری که در هنگام انجام EMG در اتاق وجود دارد. بسیاری از این نویزها را می توان با چند روش ساده حذف کرد. یکی از این روشها تمیز کردن پوست است . اگر از الکترودهای بدون پیش تقویت کننده استفاده کنیم, کارمان مشکل تر می شود . استفاده از سیستم تقویت دو قطبی یا دوگانه به حل این مشکل کمک می کند. اگر سیستم شما دارای امکان استفاده از باتری نیز می باشد مزیت بسیار مهمی است. قبل از آغاز جمع آوری اطلاعات می بایست از موارد زیر اطمینان حاصل شود. تماس کامل الکترود, عدم وجود کشیدگی در سیمها و اینکه سیمها به خوبی به متصل کننده ها وصل هستند. وقتی الکترودها در محل خود قرار گرفتند می بایست یک قسمت دستی انجام پذیرد تا مطمئن شویم که الکترودها فعالیت عضله را به درستی ثبت می کنند. اگر مشخص شود که یکی از الکترودها درست کار نمی کند می توان لیدهای مختلف الکترودها را سوئیچ کرد البته در صورتیکه سیستم امکان چنین کاری داشته باشد و یا اینکه الکترود را بین کانالهای مختلف سوئیچ کند تا ببیند آیا این الکترود در کانال دیگر کار می کند یا خیر.
اگر بعد از سوئیچ کردن همچنان سیگنال مشکل دارد باید الکترودها را سوئیچ کرد و دید آیا خود الکترودها مشکل دارند یا خیر. باید دانست که نسبت معکوس بین سیگنال دریافتی و حجم بافت تحت بررسی وجود دارد. بنابراین داشتن سیگنالهای مفید در  بررسی افراد چاق با استفاده از الکترودهای سطحی مشکل خواهد بود.
یکی از عدم مزایای استفاده از سیستمهای جمع آوری کامپیوتری جدید این است که با این سیستمها فرد امکان دیدن یک سیگنال خام در همان لحظه به صورت real time ( نظیر یک اسیلوسکوپ ) را ندارد. دیدن سیگنال خام قبل از شروع کار ( بجز یک فیلتر ضد افزایش ) مهم است چون تشخیص بین سیگنال و نویز در سیگنال خام اغلب مشکل است و در صورتیکه هر گونه پردازش در EMG صورت گیرد این کار غیر ممکن می شود. یک بار محقق به سیگنال خام نگاه می کند می بایست تعیین کند که آیا فیلترینگ مورد نیاز است یا خیر. یک الکترومایوگرافر تازه کار ممکن است در تعیین مشکلات سیگنال خام دچار مشکل شود. خط پایه موج دار در اغلب موارد با آرتی فکتهای حرکتی کم فرکانس دیده می شود. به علاوه قله های تیز می تواند نشاندهنده حرکات ناگهانی الکترود باشد. برخی موارد دیگر ممکن است شامل سیگنالهای یکسان بین تمام کانالها و یا سیگنال Hz 60 که روی بقیه سیگنالها می افتد باشد. اگر سیگنال خیلی تمیز نباشد ممکن است محقق بخواهد که اطلاعات را فیلتر کند ( برخی محققین می گویند همیشه باید اطلاعات را فیلتر کرد ). سه نوع اصلی از فیلترها در EMG استفاده می شوند: بالاگذر, پائین گذر و میان گذر. البته فیلترهای مختلف دیگری نیز وجود دارند مثل           butter worth , cheby shev و ... . در این آزمایشگاه استفاده از یک فیلتر دیجیتال بالاگذر  butter worth با قطع در Hz 15-10 معمول است که البته به فعالیت تحت بررسی بستگی دارد ( Hz 10 برای قدم زدن و Hz 15 برای حرکات سریع ). در سوی دیگر طیف, ما یک فیلتر آنالوگ پائین گذر با قطع Hz 600 برای EMG سطحی و Hz 1000 برای EMG با الکترود سوزنی به عنوان الکترود ضد افزایش استفاده می شود. اگر مشخص شود که سیگنالهای Hz 60 روی بقیه سیگنالها می افتند می توان از یک  فیلتر میان گذر که همه سیگنالهای Hz 65-55 را حذف می کند استفاده کرد. حال که ما سیگنالی تمیز داریم می توان به آن نگاه کنیم و اطلاعاتی در مورد عضلات از آن بدست آوریم. اولین اطلاعاتی که به دست می آید زمان روشن و خاموش است. در بیشتر موقعیتهای تحلیل حرکت فقط از سیگنال خام استفاده می شود هیچ پردازشی برای تمیز کردن سیگنال ( فیلترهای بالا و پائین گذر ) استفاده نمی شود. با این وجود برخی از روشهای پردازش سیگنال EMG انجام می شود. معمول ترین آنها عبارتند از : یکسوسازی نیم موج ( حذف تمام بخشهای منفی سیگنال ), یکسوسازی تمام موج ( مقدار مطلق کل سیگنال ), envelope خطی ( فیلتر کردن پائین گذر سیگنال یکسو شده تمام موج ), ریشه مربع میانگین ( root meat square ) ( اساساً‌ سیگنال را به توان 2 می رساند, میانگین یک پنجره زمانی مشخص در حدود ms 200-100 را می گیرد سپس ریشه دوم را حساب می کند ). انتگرال EMG ( ناحیه زیر منحنی یکسو شده را می توان به عنوان فعالیت کامل و یا زمان پیش تنظیم یا مقدار دامنه تعیین کرد ) و تحلیل فرکانس ( معمولاً‌ از طریق آنالیز       سریع و بررسی طیف پردانسیته تعیین می شود ). بسته به کاربرد شما هر کدام از این روشهای پردازش ممکن است لزوم پیدا کند ولی هر کدام عدم مزایای خاص خود را دارند, از جمله اینکه با انجام هر پردازش بخشهایی از اطلاعات مفید از بین می روند. برای مقایسه اطلاعات EMG میان افراد مختلف می بایست اطلاعات را در یک قالب کلی فراهم کرد. بنابراین روشهای مختلف نرمال سازی سیگنال از هر دو جنبه زمان و دامنه توسعه یافته اند. احتمالاً دو روش شایع تر نرمال سازی بر اساس زمان عبارتند از نرمال سازی به یک آزمون / سیکل یا به فازهایی در آزمون / سیکل . به عنوان مثال بیایید فرض کنیم که ما می خواهیم EMG عضلات پشت یک فرد را به صورت مداوم اشیایی را از روی زمین بر می دارد و در یک سبد قرار می دهد بررسی کنیم. ما می توانیم یک سیکل را به صورت زمان آغاز حرکت از زمانی که شی را از روی زمین بر می دارد تا وقتی که مجدداً می خواهد شی دیگر را بردارد در نظر بگیریم. حال می توان به سادگی بر اساس زمان تقسیم بندی کرد به این صورت که کل زمان لازم برای انجام این کار را به تعداد کار انجام شده تقسیم کرد و درصد سیکل را محاسبه نمود. این کار برای بسیاری از کارهایی سیکلی به خوبی عمل می کند ولی اگر کار دارای بیش از یک فاز باشد دارای عدم مزایایی است. برای کارهای چند فازی تقسیم کردن بر اساس زمان به درصد فاز به خوبی عمل می کند. مثلاً‌ در همان مثال قبلی . حال بیایید فاز بلند کردن را به صورت از لحظه برداشتن جسم تا وقتی که فرد کاملاً‌ ایستاده باشد در نظر بگیریم. فاز دوم از لحظه ایستادن کامل تا لحظه ای که جسم در سبد قرار بگیرد خواهد بود و فاز سوم از لحظه قرار گرفتن جسم در سبد تا لحظه ای که فرد می خواهد جسم دیگری را بردارد است. هر فاز به عنوان یک اتفاق مجزا صورت می گیرد. بنابراین زمانی که لازم است تا فرد جسم را برداشته و به حالت ایستاده در آید می تواند به عنوان یک تقسیم کننده حساب آید و یک درصد فاز ایجاد کند. همین طور برای فازهای بعدی. این نوع از استاندارد سازی بر اساس زمان برای کارهایی که فازهای مشخص دارند خیلی مناسب است. در این مثال بیایید بگوییم که بیشترین فعالیت عضلات قبل از قرار دادن جسم در سبد صورت می گیرد. بسیار معنی دارتر خواهد بود اگر بگوییم بیشترین فعالیت EMG در %95 فاز دوم صورت گرفته است تا اینکه بگوییم بیشترین فعالیت در 55%‌ کل کار   صورت پذیرفته است. در نوع دوم شما باید برگردید و ببینید چه کاری در 55% کار صورت می پذیرفته است. لذا آزمایشگاه ترجیح می دهد در صورت امکان از روش درصد فاز استفاده کند.
در بسیاری از موارد دامنه سیگنال نرمال سازی می شود. معمولترین روش استاندارد سازی حداکثر انقباض ایزومتریک ارادی ( MVIC ) در عضله خاص مورد استفاده است. براساس مراجع منتشر شده در آزمایش دستی عضله, معاینه کننده سپس بر قسمتی از عضله تحت بررسی نیرویی آنقدر زیاد وارد می کند که عضله نتواند خود را در موقعیت ثابت حفظ کند. اینکه آیا همیشه قادر خواهیم بود MVIC درست به دست آوریم قابل بحث است. لذا روشهای مختلف دیگری توسعه یافتند. یکی از آنها استفاده از حداکثر سطح سیگنال در کل کار است. در مثال بلند کردن اجسام که قبلاً گفته شد, این بدین معنی است که حداکثر سطح EMG از هر عضله مشخص در خلال کل کار را در نظر بگیریم سپس به این مقدار نرمال سازی کنیم. بسیاری از افراد ترجیح می دهند ه از پیکهای مختلف ( 5-4 ) استفاده کنند و میانگین آنها را به عنوان حداکثر در نظر می گیرند تا از امکان استفاده از یک قله بلند اشتباه به عنوان حداکثر جلوگیری کنند. روش دیگر نرمال سازی استفاده از مقدار متوسط سیگنال در کل آزمایش است. اگر چه این روش از حساسیت کمتری به قله های سریع که در طول آزمایش رخ می دهند دارد و اگر عضله در بیشتر زمان آزمون در حال فعالیت نباشد اطلاعات را به شدت نامتجانس می کند. مشکلی که در طول استفاده از مقادیر حداکثر یا متوسط کل آزمون رخ می دهد این است که سیگنال EMG بسته به سرعت مفاصل در طول انقباض تغییر خواهد کرد. بنابراین تا وقتی که سرعت کار را استاندارد نکنیم این روش امکان مقایسه بین کارهای مختلف را نخواهد داشت. روش دیگر که مشابه استفاده از MVIC است استفاده از یک سطح مشخص نیرو است ( مثلاً تقسیم به دامنه EMG وقتی 20 پوند را با سرعتی مشخص بلند می کنیم ). شکل دیگر این روش استفاده از دامنه ‌EMG است وقتی نیروی مشخصی را در مقابل یک شی ثابت به کار می بریم لذا سرعت از معادلات حذف می شود. تمام این روشها دارای نکات مثبت و منفی هستند و همه روشهایی برای مقایسه دامنه بین عضلات و افراد مختلف می باشند. به علاوه اگر فرد مورد بررسی دارای شرایط پاتولوژیک باشد که عضله تحت بررسی را شامل شود، به صورت مجازی به دست آوردن MVIC صحیح غیر ممکن خواهد بود و لذا اینکه آیا سایر روشهای نرمال سازی ارزش دارند مورد سوال می باشد. صرفنظر از نوع نرمال سازی که براساس زمان است یا بر اساس دامنه, باید دانست که این کار باعث حذف اطلاعات می شود.
حال که سیگنال را پاک کرده ایم و روشهای نرمال سازی را به کار بردیم, زمان بررسی سیگنال و تلاش برای تفسیر معنی آن است. اول از همه باید بدانیم که خود سیگنال EMG دارای متغیرهای بزرگی است.
مثلاً در یک فرد انجام یک کار با کار دیگر یا انجام یک کار بین افراد مختلف نتایج مختلفی ایجاد خواهد کرد چون ترکیبهای مختلف عضلات می توانند یک حرکت خاص را ایجاد کنند و این از ویژگیهای سیستم عضلانی – عصبی است. EMG از کاری به کار دیگر متفاوت خواهد بود و این به دلیل تفاوت در سرعت, ریتم و یا حتی تفاوتهای کوچک در الگوی حرکت حتی وقتی که در ظاهر مشابهند می باشد. محدوده طبیعی برای فازهای EMG وجود دارد ولی فرد باید هوشیار باشد و نقاطی مجزا را برای شروع و پایان هر بخش کار تعریف کند. این موضوع را در هنگام انجام EMG باید به یاد داشت. فاکتورهای دیگری نیز بررسی و تفسیر نتایج ‌EMG را مشکل می سازند. تغییر سرعت یا ریتم, بروز خستگی و وجود درد همگی بر الگوهای EMG اثر گذارند. عامل مزاحم دیگر در تفسیر EMG پدیده Cross talk است. Cross talk تداخل سیگنالهای EMG از عضلات کناری یا عمقی تر ناحیه آشکارسازی الکترود است. راه حل ثابتی برای این مشکل وجود ندارد و اندازه بیمار لید الکترود تاثیر زیادی بر کاهش و افزایش این اثر دارند. به عنوان مثال اگر سیستم شما دارای فاصله الکترود فعال ثابت و بزرگ است و شما بر روی جمعیت بچه ها در حال مطالعه هستید باید مطمئن باشید که اطلاعات شما حاوی مقادیر زیادی از اطلاعات عضلات کناری و عمقی است که برای شما مطلوب نیست. بسیاری از محققین الکترودهای سوزنی را بهینه کرده اند تا این مشکل را کاهش دهند.
حال که وقت زیادی را صرف فیلترینگ و نرمال سازی اطلاعات کردیم وقت آن است که در مورد اطلاعات واقعی EMG بحث کنیم. زمان روشن و خاموش شدن عضله و افزایش و کاهش فعالیت آن دو پارامتر اصلی به دست آمده از EMG است. اطلاعات EMG نمی توانند به ما بگویند که عضله چقدر قوی است, یا یک عضله از عضله دیگر قوی تر است, یا انقباض از نوع Concentric است یا ‌Eccentric یا حتی فعالیت عضله ارادی است یا غیر ارادی. قدرت عضله یا تعیین قوی تر بودن یک عضله نسبت به دیگری از مهمترین مواردی هستند که محقق به خاطرشان EMG انجام می دهد. نرمال سازی به MVIC, میانگین گیری یا استفاده از ماکزیمم همه تلاشهایی هستند برای ایجاد مکان مقایسه بین عضلات یک فرد یا عضلات افراد مختلف. این کار به صورت معمول انجام می پذیرد ولی فرد باید بداند که نتایج به دست آمده دارای مشکلاتی است که به صورت ذاتی در روشهای مورد استفاده وجود دارد و متغیرهای مختلفی در  عضلات, افراد و کارهای مختلف وجود دارد. در کنار استفاده از EMG برای تعیین الگوهای EMG ( زمان فعال شدن و زمان استراحت ) بسیاری از محققین از آن برای تعیین تغییرات سیگنال در اثر خستگی استفاده می کنند. همه اینها استفاده های ارزشمند EMG در بیومکانیک شغلی هستند.



  



نوشته شده در تاریخ 90/9/11 ساعت 4:55 ع توسط مدیر وبلاگ : احسان نصیریان


یکی از خدمات اصلی مهندسی پزشکی به علوم زیستی و پزشکی کلینیکی ارائه ابزار دقیق مهندسی پزشکی بوده است. پیشرفتهایی که در این زمینه صورت گرفته است منجر به توسعه انواع جدید ابزار دقیق مهندسی پزشکی و روشهای متعدد کلینیکی شده است مانند مانیتورینگ الکترونیکی بیمار، که یکی ازجنبه های مهم مراقبت پزشکی در حالت بحرانی است، و همچنین منجر به توسعه انواع دستگاهها برای کمک به افراد دچار ناتوانی جسمانی شده است. ابزار دقیق مهندسی پزشکی چنانچه در شکل مشاهده می گردد سه کارکرد اصلی دارد. بخش سنسور یا مبدل ابزار به عنوان واسط با سیستم فیزیولوژیکی تحت اندازه گیری عمل می کند، از این رو بیوسنسورها بخش مهم و ضروری هر سیستم اندازه گیری مهندسی پزشکی به شمار می آیند. بیوسنسور به عنوان وسیله ابتدایی برای تبدیل یک پدید? خاص زیستی، شیمیایی یا فیزیکی به یک سیگنال الکتریکی عمل می کند و باید این فرایند تبدیل را با موفقیت و بدون تغییر یا اختلال در پدیده ای که اندازه می گیرد انجام دهد. بنابراین اهمیت آنها بسیار زیاد است، چون بدون آنها ما از دینامیک متغییر در دنیای فیزیک، شیمی و زیست شناسی بی اطلاع خواهیم ماند. بیوسنسورها با کمیت های خاص متنوعی سروکار دارند، پس در مورد بیوسنسورهایی که در ابزار پزشکی کاربرد دارند در نظر گرفتن نکات فیزیولوژیک به انداز? مسایل مربوط به طراحی مهندسی اهمیت دارد. ابزار دقیق پزشکی از انفجار اطلاعات در تکنولوژی الکترونیک بهره گرفته است. ابزارهای الکترونیکی پزشکی مستقل امروزه می توانند عملیات پردازش سیگنال پیچیده ای را انجام دهند که تا همین اواخر برای آن به یک کامپیوتر جداگانه نیاز بود. با این حال، توانائیهای بسیار پیچید? ابزارهای دقیق امروزی هنوز نیازمند سیگنالهای با کیفیت بالا در ورودی هستند. نمایش وذخیره.4....... پردازش سیگنال.3...... سنسور.2 ........ سیستم فیزیولوژیک .1 ترتیب عمل کرد دستگاهها در پزشکی نشان داده شده است 

  

سنسور: چنین سیگنالهایی باید از سنسور وارد شوند که به عنوان واسطه بین ارگانیسم بیولوژیکی و بقیه ابزار دقیق عمل می کند بنابراین گستره سنسورها برای ابزارهای الکترونیکی مهندسی پزشکی، زمینه ای مهم برای تحقیق، توسعه و تولید در مهندسی پزشکی فراهم می نماید. پردازش گر سیگنال: وقتی که بیوسنسور اطلاعات بیولوژیک تحت اندازه گیری را به یک سیگنال الکترونیکی تبدیل کرد، سیگنال وارد دومین بلوک اصلی سیستم ابزار دقیق، یعنی پردازشگر سیگنال می شود. این بخش، سیگنال الکترونیکی را تقویت و فیلتر می کند و بر روی آن کار می کند تا یک سیگنال الکتریکی تولید کند که قادر باشد دستگاههای خروجی را بکار اندازد یا قابل نمایش باشد. این پردازش سیگنال می تواند یک عمل ابتدایی مانند تقویت ساده سیگنال باشد یا خیلی پیچیده تر مانند طراحی و استفاده از بسته های نرم افزاری و سخت افزاری گسترده که خروجیهای مناسب و قابل اطمینانی برای اندازه گیری انجام شده فراهم می نمایند. خروجی: بخش خروجی ابزار دقیق پزشکی از این نظر که واسط بین سیگنالهای الکتریکی و یک سیستم بیولوژیکی است شبیه بخش سنسور است. در این مورد، سیستم بیولوژیکی، فردی است که خدمات درمانی را ارائه می کند. عملکرد بخش خروجی یک ابزار پزشکی تبدیل سیگنالهای پردازش شده الکتریکی به شکلی است که افرادی که این ابزار را به کار می برند، بتوانند آن را مشاهده نموده یا در برخی موارد، اطلاعات را برای مشاهدات وتحلیلهایی در آینده ذخیره نمایند، قطعات نمونه خروجی که در سیستم اندازه گیریی پزشکی به کار می روند لوله اشعه کاتدی (CRT) (catude-ray tube) برای مشاهده سیگنالها به شکل گرافیکی یا ترکیبی از ارقام و حروف، ثبت کنند? نمودار گرافیکی (graphic chart recorder) برای مشاهده و ثبت دائمی سیگنالها و ثبت کننده نوار مغناطیسی برای ثبت دیجیتال یا آنالوگ سیگنالهایی که بعداً مورد توجه و تحلیل قرار خواهند گرفت. از این توصیف مختصر وکلی که از یک سیستم ابزار دقیق پزشکی ارائه کردیم اهمیت این نکته معلوم می شود که درک دقیق از کمیت هایی که مورد اندازه گیری هستند در طراحی هر سه قسمت اصلی سیستم ضروری است. برای آنکه اندازه گیریهای فیزیولوژیکی صحیح انجام شود، شخص باید به طور واضح بر هم کنش بین سنسور و سیستم بیولوژیکی را مشاهده و درک نماید. فقط در این صورت است که شخص می تواند خطاهای اندازه گیری را به حداقل برساند که به نوبه خود بر تصمیمات کلینیکی اثر می گذارد.

به نقل از وبسایت بیوالکتریک ایران

 




  



نوشته شده در تاریخ 90/9/11 ساعت 4:42 ع توسط مدیر وبلاگ : احسان نصیریان


در اوسط سال 1980 نخستین نسل از سامانه های رادیو تلفنی آنالوگ با استفاده از بسامدهایی کمتر از 1GHz تولید شد که به سبب نبود استاندارد جهانی در این زمینه ، سامانه های گوناگونی ظاهر میشد ند .
سامانه های آنالوگ ، طیف وسیعی از بسامد را اشغال می‌کرد ، به همین سبب سامانه های دیجیتال که مراحل تکمیلی خود را می‌گذراند، جانشین آن ها شدند، که بر اساس استانداردهای اروپایی ، GSM نام‌گذاری شد.
سامانه ی DSC1800 نیز در محدوده 1.8GHz آغاز به کار کرد.
عامل مهم سامانه ارتباطات سیار ، کنترل توان بسامد رادیویی آنها بود، و لازم بود این اطمینان ایجاد شود ، که ارتباطات سیار با نسبت سیگنال به نویز (S/N) قابل قبولی ارسال و به کار می‌روند ، نه با توان رادیویی زیاد و غیر ضروری که باعث تداخل کانال‌های همجوار و در نتیجه کاهش ظرفیت شبکه خواهد بود . به همین منظور محاسبه تشعشعات ومیدان های انتشار رادیویی ضرورت پیدا کرد.
تاریخچه بررسی تشعشعات رادیویی
در سال 1974، ا نجمن بین المللی حفاظت از تشعشعات (IRPA) که عمد تا" به تشعشعات یونیزه هسته ای می پردازد، گروه کاری تشعشعات غیر یونیزه ""NIR ( یعنی تشعشعات غیر هسته ای نظیر تشعشعات تجهیزات رادیولوژی ، امواج نوری ، امواج مایکرویو و فرستنده های رادیویی وغیره ) را تأسیس کرد . این گروه کاری وظیفه داشت کلیه مسائل و موضوعات مربوط به ایمنی محیط زیست برای آحاد جامعه را در مقابل انواع مختلف تشعشعات غیر یونیزه را مورد تحقیق وآزمایش قرار دهد ، و نتایج آن را به انجمن بین المللی حفاظت از تشعشعات گزارش نماید.

در کنگره IRPA که در سال 1977 در پاریس برگزار گردید ، این گروه کاری تغییر نام یافت ، و به نام کمیته بین المللی تشعشعات غیر یونیزه(INIRC) تبد یل شد. این انجمن در همکاری با بخش بهداشت محیطی سازمان بهداشت جهانی (WHO) به کمک این گروه توانست ، اسنادی مبنی برحدها و معیار های سلامت جامعه در مقابل تشعشعات را به سازمان بهداشت جهانی ارائه نماید ، که دربرنامه بهداشت محیطی سازمان ملل(UNEP) مورد قبول واقع شد.
در هشتمین کنگره بین المللی حفاظت از تشعشعات نیز که در مونترال کانادا در سال 1992 برگزار شد ، کمیسیون تخصصی جدید ومستقلی تحت نام "کمیسیون بین المللی حفاظت از تشعشعات غیر یونیزه" (ICNIRP) تأسیس شد که برای IRPA موفقیتی محسوب میشد ، زیرا عمده ترین وظیفه این کمیسیون تخصصی بین المللی ، بررسی اصولی و علمی مخاطرات ناشی از تشعشعات غیر یونیزه و شکل های مختلف آن و تأثیراتش بر روی محیط زیست بود.
این کمیسیون با داشتن 14 عضو اصلی دارای 4 کمیته تخصصی به شرح ذیل است:
- کمیته تخصصی امراض واگیردار(Epidemiology)
- کمیته تخصصی زیست شناسی(Biology)
- کمیته ی تخصصی سنجش تشعشعات(Dosimetery)
- کمیته تخصصی تشعشعات نوری(Optical Radiation)
راهبردهای کمیسیون ICNIRP :
راهبردهای این کمیسیون تخصصی ، انتشار اطلاعات و راهنمایی هایی برای کاهش خطرات ناشی
از تشعشعات غیر یونیزه از 0 تا 300GHz بر بهداشت محیط زیست برای همگان است ، که به طور عمده در زمینه انواع مختلف تشعشعات نوری شامل موارد ذیل است :
اشعه فرا بنفش،اشعه مرئی و فروسرخ،اشعه های لیزر،میدان های مغناطیسی و الکتریکی ساکن،بسامدهای رادیویی شامل امواج میکروویو و امواج ماوراء صوت
میدان انتشار تلفن های همراه
گوشی های تلفن همراه که در واقع فرستنده و گیرنده رادیویی کوچکی است، به طورمعمول در هنگام ارتباط در مقابل سر و در نزدیکی گوش و چشم انسان قرار می گیرد، انتشار سیگنال رادیویی توسط این گوشی ها باتوجه به ساختار دریافت و ارسال سیگنال از طریق یک آنتن تک قطبی یا دوقطبی رخ می دهد که درون محفظه دستگاه
تلفن همراه تعبیه شده است ،. در لحظه ارتباط ، قسمت سرو گوش انسان به طورکامل در حوزه میدان مغناطیسی و طول موج منتشره از سیگنال ها و در چند سانتیمتری از آن قرار خواهد گرفت .در دستگاه های ثابت (BTS) ، آنتن از یک رشته دوقطبی عمودی تشکیل شده که با پهنای پرتو
باریکی و عموما"زاویه ای بین 7 تا 10 درجه قرار دارند. این رشته آنتن ها اغلب در گوشه ی منعکس کننده ها
جهت انتشار با پهنای پرتو بین 60 تا 120 درجه تهیه و نصب می شوند و غالبا" بر روی ساختمان های بلند یا برج های آزاد با حد اقل 15 متر ارتفاع مستقر می شوند.
بنا بر این امواج منتشره از آنتن ایستگاه های ثابت (BTS) در مقابل تمامی طول بدن قرار می گیرندو عمدتا" فواصل این تعامل با آنتن بزرگتر از است که در آن D حداکثر طول آنتن و طول موج رادیویی است . تحت این شرایط مولفه های میدان مغناطیسی و الکتریکی با فاصله آنتن از بدن انسان و چگالی قدرت RF با مجذور فاصله متغیر است، این ناحیه میدان انتشار نامیده میشود.
در گوشی های تلفن همراه ، فاصله بدن تا میدان ، خیلی کمتر از است ، و در این شرایط میدان های RF دارای مولفه های خیلی قوی تری در تعامل با بافت های بیولوژیکی است.
واضح است که در این حالت پرتو متمرکز شده در اطراف آنتن ، میزان جذب ناشی از میدان ایزوتروپیک را بیشتر سبب می شود.

سنجش تشعشعات رادیویی تابیده بر بافتهای بیولوژیک(Dosimetry)
برای بسامدهای بین 800 تا 2GHz واندازه گیری تعامل این محدوده بسامد با بافت های بیولوژیکی، دستگاه هایی تولید شده است که میزان این تعامل را با نسبت SAR (نسبت جذ ب ویژه) بر حسب وات بر کیلوگرم(W/Kg) مورد سنجش قرار می دهند.
برای تطبیق میزان اندازه گیری شده ، با حد های اصلی تشعشعات ، که بر اساس فرمول SAR بیان شده است ، میتوان از طریق تجویز نوک آنتن با میزان انرژی جذب شده SAR آنرا محاسبه و بد ست آورد. میزان قدرت جذب شده (SAR) از آنتن گوشی تلفن همراه ، بسیار غیر همگن است و این مقدار در تعا مل با آدمی ، بستگی به قدرت بسامد تشعشعی گوشی ، طراحی آنتن و وضع قرار گرفتن آن در مقابل سر و نیز مد عملکرد گوشی Duty cycle) ) دارد. محل تغذیه آنتن دراین رابطه نیزمهم توصیف شده است.
نتایج یک نمونه از میزان SAR اندازه گیری شده که بر اساس آزمایش ها و پژوهش ها و مطابق با استاندارد IEEE/1992 انجام شده ، درجدول ذیل آمده است:

Duty cycle میزان SAR بر اساس IEEE توان گوشی همراه بر حسب وات
100% 8W/Kg 7


آثار بیولوژیکی
نشریات علمی آثار بیولوژیکی تشعشعات ناشی از میدان های امواج رادیویی(به ویژه امواج مایکرو ویو) را بارها مورد بررسی و تحقیق قرار داده اند ، هر چند که بیشتر این مطالب بطور اخص در رابطه با استفاده از گوشی های تلفن همراه نبوده است ، لیکن اطلاعات آن ها در زمینه احتمال خطر در ایمنی انسان در تعامل با تشعشعات رادیویی است.که عمدتا" ناشی از تجویز این میدان ها بااجسام بدون حفاظ ، و یا اختلاف در پاسخ هایی که با سامانه های گوناگون بیولوژیک بدست آمده ، بوده است.
بیشترین نتایج بدست آمده از آثار بیولوژیکی ناشی از قرار گرفتن مدل های حیوانی در معرض میدان های امواج رادیویی شامل پاسخ هایی نظیر بالا رفتن بیش از یک درجه سانتیگراد حرارت در نسج یا بدن بوده، و کم ترین نتایج در رابطه با موضوع سرطان زایی است ، که ذیلا" بآن پرداخته می شود .
مطالعات مربوط به سرطان زایی تشعشعات رادیویی
استدلال های علمی نشان می دهد که میدان های RF غیر یونیزه بوده و توان ایجاد حرکت در اطراف خود را نداشته و بنابراین با آغازگرآماس سرطانی شباهتی ندارند.
به عنوان مثال در تعدادی از مطا لعات آزمایشگاهی، گزارش شده است که تشعشعات رادیویی فاقد آسیب رساندن به بافت DNA که در معرض میدان های RF قرارگرفته اند است .
و همچنین گزارشاتی از بی تاثیری میدان های RF پیرامون تغییرات ناگهانی بسامد در ایجاد قارچ های تک سلولی (قندی) در بدن و یاخته های سرطانی خون(بیماری سرطان خون که باعث ازدیاد مفرط گلبول های سفید خون می شوند) روی موش هاواثر ناشی از عدم انطباق فاصله کانونی بسامد روی کروموزمها ، هیچ گونه آثاری بر روی گویچه بی رنگ خون انسان ((Lymphocytes مشاهده و گزارش نشده است.
در دو نمونه ازمطالعات بر روی جونده گان، نظریه ای وجود دارد که حاکی از تاثیر مستقیم میدان هایRF بر روی بافت های DNA بوده است ، هنگامی که این آزمایش ها بر روی موش ها در میدان تشعشعات با بسامد 2.45GHz و با چگالی توان محیطی 10W/m2 توسط لای و سینگ انجام گرفت ، مقدار
SAR در این حالت برابر با 1.18W/Kg بود، و نشانی ازتغییرات ژنتیکی در مغز حیوان و آزمای یاخته ها وجود داشته است، لای و سینگ در سال(1995) گزارش کرده بودند، موقعی که موش های صحرایی در معرض امواج پالسی شکل( با د یرش 2میکرو ثانیه و 500 پالس در ثانیه ) و امواج CW با
بسامد 2.45GHz و SAR های 0.6 & 1.2W/Kg قرار میگیرند ، تعداد ی شکاف های تک رشته در DNA مغز حیوان ظاهر می شود، هر چند که در هردو مقاله هیچ گونه اشاره ای به منابع ، ناپایداری آزمایش و خطاهای ناشی از آزمایش هاو نیزنتایج عددی و رقمی ارائه نکرده بودند.
این آزمایش ها می بایست قبل از آن که نتایج آن ها در مسائل مربوط به ایمنی بیولوژیکی بکار برده شود ، تکرارمی شد ند، به ویژه آن که مراکزعلمی اظهار نظر کرده بودند که میدان های RFسم زا (genotoxic)نیستند.
به علاوه در مطالعات روی حیوان ها بیش تر این بررسی ها حاکی از فقدان اثرگذاری تشعشعات رادیویی در جسم (مثل بدن) و جرم یاخته حیوانات بوده است.
بخشی از این آزمایش ها یی که توضیح داده شد در راستای استفاده از میدان های RF در بسامدها و مدوله سازی های مختلف ناشی از کاربرد تلفن های همراه است ، که بر اساس استدلال ها و اظهار نظرها این میدان ها فاقد حرکت بوده و شباهتی به آغازگر سرطان و دلیلی برای تحریک یا مولد بافت های سرطانی و یا تومورها را به طور ذاتی ندارند.
آزمایش های دیگری مبنی براین که تشعشعات رادیویی ممکن است بر روی پیشرفت تومورها از طریق افزایش در سرعت یاخته ها یا از طریق تاثیر معالجات به طریقی که تغییراتی در باروری ناشی از مجراهای سیگنال دهی ،ویا هدایت در جهت ازدیاد و تلفیق DNA ، تاثیر بگذارد ، بیان شده است.
از آن جاکه شارهای یونی از طریق غشاء سلول ، باعث ترکیب سیگنال دهی های قوی میشود ، در بعضی از گزارش ها اظهار نظر شده است که تشعشعات رادیویی ممکن است مستعد اثر گذاری بر روی شارهای یونی از طریق اثر گذاشتن بر ایجادتپش های متناوب بر روی یون های مثبت پتاسیم و سدیم درون سلول های قرمز خون حیوانی که در معرض تشعشعات رادیویی و امواج مایکرویو قرار گرفته است ، باشد.آزمایش هایی هم در شرایط تقسیم و تکثیر سلول ، تحت میدان های RF روی گویچه بی رنگ خون انسان توسط اتحادیه ویژه DNA انجام و گزارش شده است ، که در هردو آزمایش تقسیم و تکثیر سلول در هنگام تابیدن تشعشعات رادیویی ، با میزان SAR به مقدار 25W/Kg نشان داده است که هیچ گونه تغییر یا فشرده گی حتی در SAR های بالاتر در آنها حاصل نشده است.
همچنین مطالعات ونظریه هایی پیرامون تاثیر گذاری تشعشعات رادیویی امواج CW و پالس بر پیشرفت تومورهای پوستی در حیوانات ارائه شده است. در مقابل این گزارش ها، مطالعاتی مبنی بر تزریق یاخته های حیواناتی که در معرض تشعشعات
بسامد رادیویی سیگنال های CW و پالس قرارگرفته اند، گزارش شده است، که بیان‌گر فقدان آثار بر روی پیشرفت تومورها بوده است. به ویژه این که این مطالعه ، بی تاثیری پیشرفت تومور های سیاه رنگ قشر ضخیم پوست در موش های صحرایی را که در معرض مداوم میدان های تشعشعی RF و امواج CW و پالس قرار گرفته اند ، نشان داده است که غیر موجه و غیر قابل قبول بوده اند.

منابع: 1- Health physics April 1998,Volume 74,Number 4 2-Guideline for limiting exposure to time-varying electric ,magnetic, and electromagnetic field;2004 /www.irpa.net واژه ها و اختصارات:
IRPA: International Radiation Protection Association
PCN: Personal Communication Network
NIR: Non-Ionizing Radiation
INIRC: International Non-Ionizing Radiation Committee
WH World Health Organization
UNEP: United Nations Environment Program
ICNIRP:International Commission on Non-Ionizing Radiation Protection
SAR: Specific Absorption Rate



  



نوشته شده در تاریخ 90/9/11 ساعت 4:39 ع توسط مدیر وبلاگ : احسان نصیریان


طب الکترونیکی، ترکیبی از فناوری پیشرفته کامپیوتر درمانهای مکمل است، که می‎توان آن را شیوه‎ جدیدی برای تشخیص درمان نارسائیهای انرژی در بدن دانست.
طب الکترونیکی، از داروها و روشهای طبیعی درمان از قبیل «داروهای هومیوپاتی»، «گیاهان داروئی چینی» و غیره و ترکیب آنها با رنگ، نور و صدا در یک قالب الکترونیکی به نام قرص الکترونیکی (e-Pill) استفاده می‎کند که می‎توان آن را توسط یک کامپیوتر شخصی پخش کرد یا در تلویزیون مانند یک فیلم تماشا کرد. بدین ترتیب آنچه می‎بینید و می‎شنوید، یک داروی الکترونیکی است. هر قرص الکترونیکی چند رسانه‎ای، یا مالتی‎مدیا، منحصر به فرد بوده و پس از تشخیص کامل وضعیت فرد، براساس یک نمونه از بافت بدن بیمار مانند یک تار موی او، ساخته می‎شود. این نوع بافت برای سنجش وضعیت سلامتی بیمار از طریق کنترل علائم حیاتی تمام اعضاء و عملکرد سوخت و ساز بدن و و حساسیت‎ها و سوء تغذیه مورد استفاده قرار می‎گیرد. میزان شفابخشی هر قرص الکترونیکی نسبت به نیاز هر بیمار متفااوت بوده و ممکن است ترکیبی از داروهای مکمل را شامل شود.
طب الکترونیکی برای کودکان ایده‎آل است. زیرا بدون عوارض جانبی بوده و تماشای آن نیز لذت بخش است. به علاوه، این روش برای کودکانی که در مقابل قرص‎ها و انواع داروها مقاومت می‎کنند و به هنگام انتظار در مطب جار و جنجال به راه می‎اندازند، کاملا ایده‎ال است.

چرا طب الکترونیکی تا این حد قدرتمند است؟

- درمان الکترونیکی از آن جهت قدرتمند است که چند روش درمان شناخته شده طبیعی و غیرطبیعی را درون یک سیستم کامل پیوند می‎دهد، مثل داروهای هومیوپاتی، گیاهان چینی، بلورها و مواد معدنی، روشهای الکترونیکی پیشرفته، درمان با رنگها و جواهرات. درمان با صوت، تشخیص مواد غذایی و ویتامین، بررسی حساسیت‎ها و سموم بدن.
- این روش کاملا به نیازهای بدن بیمار بستگی دارد و با نظریه یک قرص برای همه مخالف است.
- ترکیبی از داروهای مختلف در هر زمان قابل تجویز است.
- مقدار داروهای تجویز شده در هر قرص در مقایسه با روشهای دیگر، بیشتر است. مثلا ممکن است بیمار، 30 داروی متفاوت را در یک قرص الکترونیکی، دریافت کند. به همین دلیل، این روش (یک دارو در هر قرص) در گذشته همیشه، پرهزینه‎أی بوده است.
- طبابت الکترونیکی شیوه‎های جدید درمان با با رنگ، نور و صوت را که قبلاً در دسترس نبودند، ارائه می‎کند.
- طب الکترونیکی درمانهای غیرتهاجمی را برای بزرگسالان، کودکان و حیوانات، فراهم می‎کند.
- برای اولین بار، دارویی در یک قالب الکترونیکی فراهم می‎شود که می‎توان آن را در اینترنت تجویز کرد. بسیاری از مردم به پزشکان غیرسنتی مراجعه می‎کنند، چون از پزشکان عادی نتیجه مطلوبی نمی‎گیرند. با استفاده از این فناوری جدید ما می‎توانیم به ریشه مشکلات و نحوه درمان آنها پی ببریم طب الکترونیکی، در مداوای موارد متنوعی از بیماریهایی که معمولاً‌با روشهای سنتی هومیوپاتی،‌ داروهای گیاهی و طب سوزنی مداوا می‎شوند، موفق بوده است.
مرکز طب الکترونیک، هم اکنون، اولین آزمایش Online دنیا را با تمرکز بر نیازهای زنان در حیطه‎های PMS (نشانه‎های جسمی و روحی پیش قاعدگی) و PMT (تنشهای قبل از قاعدگی) بر پا کرده است. جزئیات کامل این طرح تجربی در وب سایت این مرکز موجود است. برای امتحان یک درمان رایگان، یک نرم افزار تجویز کننده را بر روی کامپیوترتان Download کرده و یکی از داروهای پیشنهادی رایگان را انتخاب کنید.



  





طراحی پوسته توسط تیم پارسی بلاگ