سفارش تبلیغ
صبا ویژن
وبلاگ تخصصی جوان نوین
   مشخصات مدیر وبلاگ
 
  پیوند دوستان
 
    آمارو اطلاعات

بازدید امروز : 1
بازدید دیروز : 4
کل بازدید : 277931
کل یادداشتها ها : 254

طول ناحیه در قالب بزرگتر از حد مجاز
نوشته شده در تاریخ 90/9/11 ساعت 4:36 ع توسط مدیر وبلاگ : احسان نصیریان


امکان استفاده از نانوروبات‌ها در پزشکی

(21 نوامبر 2005) (30 ـبتم 84)- مجلة روبوتیک twov در شمارة ماه نوامبر خود مقاله‌ای در زمینة نانوروبات‌های پزشکی منتشر کرده است.
در این مقاله سؤالاتی در زمینة امکانپذیر بودن نانوروبوتیک وسایلی مانند کنترل حرکت، ارتباط، برهم‌کنش وسایل پیرامون و زیست‌سازگاری آنها مطرح شده است. همچنین فواید بسیاری که نانوروبات‌ها از طریق توسعة روش‌های درمانی زیست‌پزشکی جدید به دنبال خواهند داشت ذکر شده است.


فناوری‌های جدیدتولید نانوروبوت‌ها


چه مراحلی برای ساخت نانوروباتی که بتواند در پزشکی به کار رود باید طی شود؟
کاوالکانتی: ساخت نانوروبوت‌ها مستلزم حصول پیشرفت‌هایی در مواد صلب الماس‌گونه است و این کار هم امکان‌پذیر است و تولید نانوابزارها طی سال‌های اخیر روبه رشد بوده است. تولید الماس گونه‌ها مرحله به مرحله در حال پیشرفت است و برای حرکت به سمت تولید روبات‌ها در ابعادی قابل مقایسه با باکتری‌ها، لازم است درکی از این زمینه داشته باشیم. به عنوان مثال، چند ماه قبل، اولین روبات متحرک ساخته شد که می‌توانست تا ابعاد 60 در 250 میکرون را اندازه‌ بگیرد.
در این مقیاس، می‌توان پیش‌بینی نمود که ابعاد روبات‌هایی که در سال‌های آینده پدید می‌آیند به سرعت به 100 میکرون و بعد از آن 50 میکرون و همین طور کاهش می‌یابند. هم‌اکنون نمونة اولیة وسیلة 90 نانومتری Intel، یک SRAM 52 مگابیتیِ کاملاً کاربردی تولید کرده که طول پایة ترانزیستور آن nm50 است و ابعاد سلول SRAM آن تنها حدود 1 یا تقریباً نصف اندازة سلول اغلب SRAMهای پیشرفتة امروزی است. و این کوچک‌سازی با توجه به نقشه راه اتحادیة صنعت نیمه‌رساناها ادامه می‌یابد.
تا سال 2016، ICهای با عملکرد بالا حاوی بیش از 8/8 میلیارد ترانزیستور، در فضایی به مساحت 2mm280 خواهند بود. این رقم بیش از 25 برابر تعداد ترانزیستورهایی است که روی تراشه‌های امروزی با ابعاد nm130 قرار دارد. اما از آنجا که درون بدن انسان رگ‌های کوچکی به قطر 30 تا 60 میکرون وجود دارد، می‌توان پیدایش اولین نانوروبات طی ده سال آینده را کاملاً طبیعی دانست.

فناوری‌نانو در خدمت پزشکی

 
آیا در حال حاضر هیچ کار آزمایشگاهی روی انسان یا حیوان در این زمینه صورت گرفته است؟
کاوالکانتی: در واقع تاکنون نانوابزارهای کاملاً کاربردی بسیاری مانند موتورها، حسگرها، محاسبه‌گرهای زیست مولکولی و نانوترانزیستورها ساخته شده است. اما در حال حاضر عمده‌ترین چالش، مجتمع‌سازی چندین بخش مجزا از این نانوابزارها روی یک نانوروبات قابل کنترل است، که برای انجام آن هم‌اکنون گروه‌های تحقیقاتی متعددی در نقاط مختلف جهان، طی پروژه‌های میان رشته‌ای با یکدیگر همکاری می‌کنند. در این راه، شبیه‌سازی‌های نظری به عنوان ابزاری مفید و ارزشمند برای مجتمع‌سازی سیستم و آزمایش‌پذیر شدن آن به شمار می‌آید.
به هر حال، اطمینان از دستیابی به کنترل مناسب بر چنین نانوماشین‌هایی یکی از موضوعات بحث‌انگیز در راه محقق شدن نانوروبات‌هاست و در واقع شما می‌توانید از طریق روش‌های نانومکاترونیک (nanomechatronics) به ارزیابی و محاسبه آن بپردازید. استفاده از نانوروبات‌ها در انسان پس از انجام صدها آزمایش با تمام جزئیات از ابتدا روی موش‌های آزمایشگاهی ممکن خواهد شد. در واقع، این روند طولانی آزمایشگاهی، برای هر فناوری زیست‌پزشکی جدیدی انجام می‌شود. مانند فناوری‌نانوپوسته‌ها که با موفقیت روی موش‌های آزمایشگاهی برای مبارزه با سرطان به کار گرفته شد.
استفاده از این نانوپوسته‌ها نتیجة پیشرفت‌های به دست آمده در فناوری‌نانو است و به عنوان یک روش درمانی- دارویی نتایج مثبت و امیدوارکننده‌ای داشته است. با پیشرفت بیشتر در حرکت به سمت نانوروبات‌ها، می‌توان به نتایج مؤثرتر دیگری در زمینة مراقبت‌های بهداشتی امیدوار بود.

 
ملزومات Customized

برای آن که یک نانوروبات بتواند درون بدن انسان کار کند چه چیزهایی لازم است؟
کاوالکانتی: برای رسیدن به بیشترین کارآیی، نانوروبات‌ها در حالت ایده‌آل نباید قطری بزرگ‌تر از 3 میکرون داشته باشند. این نانـوروبات باید دارای مبـدل‌ها (transducers) و محرک‌ها (actuator)های کارآمد با هزینه مصرفی کم بوده و بتوانند به محض قرار گرفتن درون بدن انسان به طور موثری با محیط پیرامون خود تعامل نمایند.
برای پاسخ‌دهی مؤثر در زمان واقعی به محیط، در این نانوروبات باید سیستم مجتمعی تعبیه شده باشد. به همین دلیل انتظار می‌رود هنگام نیاز به چنین پاسخ‌های حرکتی با استفاده از موتورهایی برای کشش روبات حرکت‌های کنترلی لازم را فراهم کرد کاری که با برخی دخالت‌های زیست پزشکی قابل انجام است.کنترل نانوروباتیِ مبتنی بر حسگرها را هم می‌توان با استفاده از نانوحسگرهای حرارتی و یا شیمیایی انجام داد.


استفاده از نانوروبات‌ها


آیا شما می‌توانید زمان استفاده از نانوروبات‌ها را درون بدن بیماران پیش‌بینی کنید؟
کاوالکانتی: هر دارویی قبل از آن که برای مداوا به کار رود، لازم است پس از مجموعه‌ای از بررسی‌های آزمایشگاهی تأییدیة لازم را به دست آورد. و هیچ تفاوتی هم بین داروهای سنتی و داروهای جدید مبتنی بر فناوری‌نانو (نانوداروها) وجود ندارد.
بعد از طی این مرحله و با به دست آمدن نتایج خوب از صدها مورد بررسی آزمایشگاهی و حتی انجام آزمایش‌های بالینی بیشتر، به طور طبیعی، نسبت به این روش‌ها در درمان بیماران اطمینان بیشتری پدید می‌آید.
به کار بردن فناوری‌های تایید شده زیست‌پزشکی در زندگی روزانه از سوی مردم دور از انتظار نیست و این شامل نانوپوسته‌ها، نانوداروهای مبتنی بر DNA و نانوروبات‌ها می‌شود.



  



نوشته شده در تاریخ 90/8/17 ساعت 11:32 ع توسط مدیر وبلاگ : احسان نصیریان


شرح کلی مدار امروز می خواهم به ذکر یک نمونه عملی از منابع تغذیه سوئیچینگ بپردازم تا با بررسی مدار آن، عملکرد این سیستم برای شما بیشتر روشن شود. حال با توجه به مدار به شرح اجزاء مختلف آن خواهم پرداخت.
مداری را که به عنوان یک مثال عملی مشاهده می¬نمایید، مدار یک منبع تغذیه سوئیچینگ 200 وات ATX متعلق به کامپیوتر شخصی است که توسط شرکت TDK طراحی و ساخته شده است.


 

SMPSmaplarge.gif


برای دیدن نقشه فوق در اندازه بزرگتر (اصلی) اینجا را کلیک کنید. اگر لینک فوق کار نداد از این لینک استفاده نمایید. http://arashmt.8m.com/persianblog/ در این منبع تغذیه سوئیچینگ از یک آی¬سی با شماره TL494 استفاده شده و همچنین از یک مبدل که ترانزیستور¬های آن با آرایش پوش- پول عمل رگولاسیون خروجی را انجام می¬دهند استفاده شده است. ولتاژ خط برق شهر پس از عبور از مدار فیلتر ورودی متشکل از (C1, R1, T1, C4, T5) به بلوک یکسو¬ساز هدایت می¬شود. مدار یکسو¬کننده از نوع پل¬دیودی تمام¬موج می¬باشد که نسبت به سایر یکسو¬کننده¬های دیگر از هر لحاظ مقرون به صرفه¬تر است. هنگامی که کلید تبدیل از حالت 230 ولت بر روی 115 ولت قرار گیرد، در نتیجه مدار سیستم دو برابر کننده وارد عمل می¬شود. مقاومت¬های واریستور (مقاومت متغیر با ولتاژ) Z1 و Z2 دارای عملکرد محافظت از اضافه ولتاژ در ورودی می¬باشند. مقاومت ترمیستور (مقاومت متغیر با دما) NTCR1 جهت محافظت در برابر جریان هجومی در هنگام شارژ C5 و C6 مورد استفاده قرار گرفته است.

مقاومت¬های R2 و R3 فقط برای تخلیه نمودن بار الکتریکی داخل خازن¬ها و جلوگیری از خطر برق گرفتگی در هنگام قطع بودن (خاموش بودن) منبع تغذیه به کار می¬روند. در هنگام اتصال منبع تغذیه به برق شهر، C5 و C6 با هم در ابتدا تا حد بالا¬تر از 300 ولت شارژ می¬شوند.

FTATX.gif

قسمت ثانویه منبع تغذیه به صورت کنترل شده توسط Q12 راه¬اندازی شده و سپس ولتاژ در خروجی قسمت ثانویه ظاهر می¬شود. در پی آن IC3 که یک رگولاتور ولتاژ 5 ولت می¬باشد، ولتاژ 5 ولتی مورد نیاز مادر¬برد را برای راه¬اندازی گیت¬های منطقی و سایر موارد دیگر تأمین می¬نماید.
سپس ولتاژ تثبیت نشده از طریق D30 به چیپ کنترلی اصلی یعنی IC1 و همچنین ترانزیستور¬های Q3 و Q4 هدایت می¬شود. وقتی منبع تغذیه اصلی در حال کار بود، ولتاژ 12 ولت خروجی از طریق دیود D به سمت IC1 هدایت می¬شود.

حالت کم¬مصرف Stand By

در حالت کم¬مصرف Stand By توسط ولتاژ مثبت در پایه PS-ON که از طریق مقاومت R23 از مدار ثانویه منبع تغذیه تأمین شده مانع از کار کردن قسمت اصلی منبع تغذیه می¬شویم. چون ترانزیستور Q10 باز شده و در نتیجه ترانزیستور Q1 نیز در حالت باز قرار گرفته و در پی آن ولتاژ مبنای 5 ولت پایه شماره 14 IO1 برای پایه شماره 4 IO1 تأمین می¬شود. و مدار در نهایت به حالت مسدود شده کلید¬زنی خواهد شد. ترانزیستور¬های Q3 و Q4 هدایت خواهند کرد و سیم¬پیچ ترانسفورماتور کمکی T2 را اتصال کوتاه خواهند نمود. توسط پایه شماره 4 IO1 ما قادریم که پهنای پالس خروجی را تعیین نماییم. صفر بیانگر بیشترین پهنای پالس و 5 ولت بیانگر این است که پهنای پالسی وجود ندارد.

تشریح کارکرد منبع تغذیه

وقتی کسی کلید روشن شدن کامپیوتر را فشار دهد، در نتیجه مادر¬برد صفر منطقی یا زمین منطقی را برای پایه PS-ON فراهم می¬نماید. ترانزیستور Q10 بسته شده و در نتیجه Q1 نیز بسته می¬شود و خازن C15 از مسیر مقاومت R15 شروع به شارژ شدن نموده و در پایه شماره 4 IC1 شاهد شروع کاهش ولتاژ دو سر مقاومت R17 به سمت صفر می¬باشیم. به علت این ولتاژ بیشترین مقدار پهنای پالس بطور پیوسته افزوده شده و باعث راه¬اندازی نرم و بدون اشکال قسمت اصلی منبع تغذیه خواهیم بود. در حالت عملکرد طبیعی منبع تغذیه دائماً توسط IC1 کنترل می¬شود. زمانی که ترانزیستور¬های Q2 و Q1 بسته¬اند، ترانزیستور¬های Q3 و Q4 باز می¬باشند. وقتی که می¬خواهیم یکی از ترانزیستور¬های قدرت Q1 و Q2 را باز کنیم، مجبور هستیم که تحریک ترانزیستور¬های Q3 و Q4 را برداریم. جریان از مسیر مقاومت R46 و دیود D14 و همچنین سیم¬پیچ T2 جاری می¬شود. این جریان باعث می¬شود که ولتاژ تحریک بیس ترانزیستور قدرت فراهم شده و به دلیل وجود فیدبک مثبت ترانزیستور خیلی سریع در حالت اشباع قرار گیرد. با سپری شدن این ضربه ناگهانی، هر دو ترانزیستور باز می¬شوند. فیدبک مثبت از بین رفته و Overshoot در سیم¬پیچ تحریکی را ایجا می کند که باعث بسته شدن سریع ترانزیستور قدرت می¬شود. مجدداً این فرایند در ترانزیستور دوم تکرار می¬شود. ترانزیستور¬های Q1 و Q2 متناوباً ولتاژ مثبت و منفی را به یکی از دو سر سیم¬پیچ اولیه متصل می¬نمایند. جریان الکتریکی از مسیر شاخه امیتر Q1 (کلکتور Q2) را در سیم¬پیچ ثالثیه جاری شده و ترانسفورماتور T2 را تحریک می¬نماید. و سپس از سیم¬پیچ اولیه ترانسفورماتور T3 و خازن C7 و مرکز مجازی ولتاژ تغذیه ورودی مسیر خود را تکمیل می¬نماید.

پایداری ولتاژ خروجی

خروجی¬های +5v و +12v توسط مقاومت¬های R25 و R26 دائماً اندازه¬گیری می¬شوند و برای پایدار نگه¬داشتن آنها را به IC1 ارسال می¬نمایند. سایر ولتاژ¬ها از لحاظ پایداری مواظبت نمی¬شوند و مقدار آنها را با تعداد دور سیم¬پیچی ترانس و دیود¬ها به دست می¬آورند. در مقدار خروجی میزان رأکتانس سیم¬پیچی به دلیل کار در فرکانس بالا اهمیت زیادی دارد. همان¬طور که می¬دانید در جریان مستقیم تعداد دور سیم¬پیچی اهمیتی ندارد و همواره ولتاژی روی سیم¬پیچ افت نمی¬نماید. اما با بالا رفتن فرکانس تعداد دور سیم¬پیچی و نوع هسته در میزان افت ولتاژ روی سیم¬پیچ دخالت زیادی دارد. معمولاً ولتاژ¬های خروجی حدود 10% مجاز هستند که انحراف از مقدار نامی خود داشته باشند. کنترل کننده IC1 با استفاده از Error Amplifier در پایه شماره 2 خود حاصل از مقاومت¬های مقسم ولتاژ R24/R19 و مقدار ولتاژ مبنای 5 ولت را در پایه 14 خود مقایسه نموده و این انحراف 10% را جبران می¬نماید.

 Power Good

مادر¬برد به سیگنال Power Good نیاز دارد. وقتی که همه ولتاژ¬های خروجی به حالت پایداری رسیده باشند، پایه Power Good مقدار 5 ولت یا یک منطقی می¬شود. Power Good معمولاً به پایه RESET بر روی مادر¬برد متصل می¬شود.

پایداری ولتاژ 3.3 ولت

به مداری که به ولتاژ 3.3 ولت متصل است توجه کنید. این مدار اضافه ولتاژ پایداری را به دلیل افت ولتاژ در کابل ایجاد می¬نماید. یک سیم¬پیچ کمکی برای اندازه¬گیری ولتاژ 3.3 ولت در مادر¬برد در نظر گرفته شده است.

مدار اضافه ولتاژ

این مدار از ترکیب ترانزیستور¬های Q5 و Q6 و تعداد دیگری از قطعات ساخته شده است. این مدار کلیه ولتاژ¬های خروجی را از لحاظ ایجاد اضافه ولتاژ در آنها محدود نموده و محافظت می¬نماید.
برای مثال اگر اشتباهاً بین خروجی¬های +5v و -5v اتصال کوتاهی به وجود آید، از طریق مسیر D10، R28 و D9 ولتاژ مثبت به پایه بیس Q6 می¬رسد. این ترانزیستور اکنون باز است و ترانزیستور Q5 نیز باز می¬باشد. ولتاژ +5v از پایه 14 کنترل کننده IC1 از مسیر D11 به پایه شماره 4 کنترل کننده IC1 رسیده و منبع تغذیه را بلوک می¬کند. از طرف دیگر Q6 توسط ولتاژ رسیده به بیس خود روشن شده و مدار برق ورودی منبع تغذیه را قطع می¬کند.

 



  



نوشته شده در تاریخ 90/8/5 ساعت 6:42 ع توسط مدیر وبلاگ : احسان نصیریان


 

www.javannovin.parsiblog.com



  



نوشته شده در تاریخ 90/7/28 ساعت 6:50 ع توسط مدیر وبلاگ : احسان نصیریان


در این‌ نوشتار، روش‌ جدیدی‌ برای‌ تغییر ولتاژ خروجی‌ ترانسفورماتورها با استفاده‌از کلیدهای‌ الکترونیکی‌ و تعدادی‌ سیم‌پیچ‌ تغییر وضعیت‌ معرفی‌ می‌شود. از جمله‌ مزایای‌این‌ روش‌ می‌توان‌ به‌ امکان‌ ایجاد 48 پله‌ در ولتاژ در مقایسه‌ با سیستمهای‌ مکانیکی‌تغییر ولتاژ که‌ معمولا 16 سطح‌ ولتاژ را ایجاد می‌کند، امکان‌ گذر از یک‌ ولتاژ به‌ ولتاژ دیگربدون‌ عبور از مقادیر میانی‌ آنها و استفاده‌ از تعداد کمتری‌ سیم‌پیچ‌ برای‌ تغییردهنده‌ ولتاژاشاره‌ کرد. در متن‌ نوشتار مثالهایی‌ برای‌ تغییردهنده‌ ولتاژ برای‌ ترانسهای‌ با ظرفیت‌ 30و 100 مگاولت‌ آمپر مطرح‌ شده‌ و نتایج‌ آزمایشهای‌ انجام‌ شده‌ برای‌ یک‌ نمونه‌ عملی‌ وساخته‌ شده‌ با ظرفیت‌ 6 کیلوولت‌ آمپر ارایه‌ شده‌ که‌ نشانگر کاهش‌ میزان‌ هارمونیکها وفیلکوهاست‌. همچنین‌ بررسی‌ اقتصادی‌، حکایت‌ از کاهش‌ هزینه‌های‌ این‌ تغییردهنده‌ولتاژ در مقایسه‌ با انواع‌ الکترونیکی‌ قبلی‌ دارد.

استفاده‌ از تغییردهنده‌های‌ ولتاژالکترونیکی‌ به‌ دلیل‌ عملکرد مناسبتر وهزینه‌های‌ نگهداری‌ کمتر، نسبت‌ به‌ سایرانواع‌ آن‌ برتری‌ دارد. از سوی‌ دیگر بالا بودن‌هزینه‌ اولیه‌ این‌ سیستمها در مقایسه‌ با انواع‌مکانیکی‌ آن‌، بکارگیری‌ آنها را در عمل‌ بامحدودیت‌ مواجه‌ کرده‌ است‌. روش‌ ارایه‌ شده‌در این‌ نوشتار ترکیبی‌ از تغییردهنده‌ ولتاژالکترونیکی‌ با تغییردهنده‌های‌ ولتاژمکانیکی‌ است‌. به‌ این‌ صورت‌ که‌ با استفاده‌ ازتعاد کمتری‌ سیم‌پیچ‌ تغیر دهنده‌ ولتاژ (درمقایسه‌ با نوع‌ مکانیکی‌) بکارگیری‌ کلیدهای‌الکترونیکی‌ و اعمال‌ روش‌ کنترلی‌ مناسب‌،سطوح‌ ولتاژ بیشتری‌ را با صرف‌ هزینه‌ کمتربرای‌ ترانسفورماتور ایجاد می‌کند.

فکر اصلی‌ در این‌ کار استفاده‌ ازمدولاسیون‌ سیکل‌ گسسته‌ (DCM) است‌. دراین‌ روش‌ می‌توان‌ با ترکیب‌ دو موج‌ بادامنه‌های‌ متفاوت‌ وابسته‌ با اختلاف‌ کم‌ ازیکدیگر، موج‌ خروجی‌ موردنظر را که‌ دامنه‌ای‌بین‌ این‌ دو موج‌ دارد، به‌ دست‌ آورد. موضوع‌دیگر شکل‌ مداری‌ (توپولوژی‌) مورد نیاز برای‌دستیابی‌ به‌ اهداف‌ فنی‌ موردنظر و همزمان‌،کاهش‌ هزینه‌هاست‌. پس‌ از بررسیهای‌ بعمل‌آمده‌، در نهایت‌ آرایشی‌ شامل‌ یک ‌سیم‌پیچی‌ تغییردهنده‌ ولتاژ ترانسفورماتور به‌همراه‌ چهار کلید الکترونیکی‌ استفاده‌ شده‌است‌.

سابقه‌ موضوع‌
تغییردهنده‌های‌ ولتاژ ترانسها یکی‌ ازتجهیزات‌ هزینه‌ بر سیستمهای‌ قدرت‌ است‌.این‌ وسیله‌ کاربردهای‌ متعددی‌ دارد که‌ ازجمله‌ می‌توان‌ به‌ ترانسفورماتورهای‌تنظیم‌کننده‌ ولتاژ AC، ترانسفورماتورهای‌مورد استفاده‌ در یکسوکننده‌ و معکوس‌کننده‌سیستمهای‌ ولتاژ بالای‌ مستقیم‌ (HVDC) وتنظیم‌کننده‌های‌ زاویه‌ فاز تجهیزات‌ تحت‌بارهای‌ مختلف‌ نام‌ برد. در تمام‌ روشهایی‌ که‌برای‌ تغییر ولتاژ خروجی‌ ترانسفورماتورها استفاده‌ می‌شود، مسأله‌ کلیدزنی‌ مطرح‌ است‌.در یک‌ روش‌ متداول‌ از کنتاکت‌های‌ ثابت‌ ومتحرک‌ نسبتا گران‌ قیمت‌ اتفاده‌ می‌شود،کنتاکت‌های‌ متحرک‌ با تغییر وضعیت‌ واتصال‌ به‌ یک‌ سری‌ کنتاکت‌ ثابت‌، تعدادحلقه‌های‌ سیم‌پیچ‌ اولیه‌ و به‌ دنبال‌ آن‌ ولتاژ راتغییر می‌دهند. این‌ کار در زمانی‌ کمتر از 10میلی‌ثانیه‌ انجام‌ می‌شود. در روش‌ دیگرکلیدزنی‌، با استفاده‌ از کلیدهای‌ الکترونیکی‌،با استفاده‌ از کلیدهای‌ الکترونیکی‌، تغییرتعداد حلقه‌های‌ سیم‌پیچ‌ در زمان‌ کوتاه‌تری‌ انجام‌ می‌شود، با کنترل‌ گیت‌ کلیدهایی‌ نظیرتریستور (SCR) و یا تریستور با قابلیت‌ قطع‌توسط گیت‌ (GTO)که‌ به‌ صورت‌ زوجی‌ و به‌شکل‌ معکوس‌ به‌ یکدیگر متصل‌ شده‌اند،می‌توان‌ کلیدزنی‌ سیم‌پیچ‌ها را انجام‌ داد. دراین‌ روش‌ با یک‌ سیستم‌ کنترل‌ از قبل‌ تنظیم ‌شده‌، می‌توان‌ با روشن‌ کردن‌ مناسب‌ کلیدها،تعدادی‌ از سیم‌پیچها را اتصال‌ کوتاه‌ کرده‌ وتعدادی‌ دیگر را در مدار آورد. در صورت‌استفاده‌ از تعداد بیشتری‌ سیم‌پیچ‌ که‌ نیروی‌محرکه‌ القا شده‌ در تعدادی‌ از آنها در جهت‌مخالف‌ ولتاژ اصلی‌ است‌ و نیز استفاده‌ از تعدادبیشتری‌ کلید الکترونیکی‌، می‌توان‌ محدوده‌وسیعی‌ را برای‌ ولتاژ خروجی‌ ایجاد کرد.
تغییردهنده‌های‌ ولتاژ مکانیکی‌، همواره‌سمت‌ ولتاژ بالای‌ ترانسفورماتور که‌ جریان‌کمتری‌ دارد، نصب‌ می‌شود. اما در نوع ‌الکترونیکی‌، برای‌ کاهش‌ هزینه‌ و دستیابی‌به‌ محدوده‌ وسیعتر برای‌ ولتاژ خروجی‌،تغیردهنده‌ در سمت‌ اولیه‌ ترانس‌ یا در ثانویه‌و در صورت‌ لزوم‌ در هر دو سمت‌ می‌توانداستفاده‌ نشود. از سوی‌ دیگر، استفاده‌ از تغییردهنده‌های‌ ولتاژ الکترونیکی‌ مشکلات‌ ومحدودیتهایی‌ نیز دارد، هزینه‌ بالای‌کلیدهای‌ الکترونیک‌ موردنیاز که‌ باید تحمل‌جریان‌ و ولتاژ زیادی‌ را داشته‌ باشند، تلفات‌این‌ کلیدها درحالت‌ کار که‌ جریان‌ از آنها عبورمی‌کند و سیم‌پیچ‌های‌ خاصی‌ که‌ برای‌ تأمین‌محدوده‌ مورد نظر به‌ منظور تأمین‌ ولتاژخروجی‌ موردنیاز هستند، از جمله‌ این‌ موارداست‌. بنابراین‌ هدف‌ اصلی‌ کاهش‌ تعدادکلیدهای‌ الکترونیکی‌ موردنیاز، پایین‌ آوردن‌ظرفیت‌ آنهاو استفاده‌ از سیم‌پیچهای‌ کمتر وبا آرایش‌ ساده‌تر است‌. این‌ مشکلات‌ ا جرایی‌باعث‌ شده‌ تا تغییردهنده‌های‌ ولتاژ الکترونیک‌ نتوانند با هزینه‌ای‌ مناسب‌ ساخته‌و به‌ صورت‌ تجاری‌ بکار گرفته‌ شوند. یک‌روش‌ ساده‌ ارایه‌ شده‌ برای‌ اقتصادی‌ کردن‌تغییردهنده‌ ولتاژ الکترونیکی‌، کنترل‌ زاویه‌ فازبرای‌ تغییر مقدار ولتاژ خروجی‌ است‌. این‌روش‌ درعین‌ سادگی‌ موجب‌ ایجادهارمونیکهای‌ مزاحم‌ در شبکه‌ شده‌ که‌ خود به‌صورت‌ مضاعف‌ نیاز به‌ هزینه‌ای‌ برای‌استفاده‌ از فیلترهای‌ هارمونیکی‌ را مطرح‌می‌کند. با توجه‌ به‌ توضیحات‌ فوق‌، به‌ نظرمی‌رسد تا تبدیل‌ تنظیم‌کننده‌های‌ ولتاژالکترونیکی‌ به‌ نحوی‌ که‌ بتوانند به‌ صورت‌گسترده‌ و بخصوص‌ برای‌ ترانسفورماتورهای‌با ظرفیت‌ بالا، بکار گرفته‌ شوند، راهی‌طولانی‌ وجود دارد.

مدولاسیون‌ سیکل‌ گسسته‌ (DCM)
مبنای‌ کار مدولاسیون‌ سیکل‌ گسسته‌،استفاده‌ از ترانسفورماتور با تعدادتغییردهنده‌های‌ کمتر برای‌ دستیابی‌ به‌ شکل‌موج‌ ولتاژ خروجی‌ موردنیاز، است‌. این‌ کار باکلیدزنی‌ و در مدار قرار دادن‌ یا از مدار خارج ‌کردن‌ تعدادی‌ از سیم‌پیچهای‌ تغییردهنده‌ولتاژ ترانس‌، انجام‌ می‌شود. با این‌ کار مقدارمؤثر ولتاژ خروجی‌، در مقدار مطلوب‌، تنظیم‌می‌شود. برای‌ کاهش‌ هارمونیکهای‌ تولیدید،طی‌ عملیات‌ تغییر سیم‌پیچ‌، تغییر وضعیت‌ درلحظه‌ عبور جریان‌ از صفر انجام‌ می‌شود. یک‌دوره‌ تناوب‌ از مدولاسیون‌ سیکل‌ گسسته‌نمایش‌ داده‌ شده‌ است‌. همان‌ طور ه‌ در شکل‌(1) دیده‌ می‌شود از DCM برای‌ تطبیق‌ولتاژهایی‌ با دامنه‌های‌ نامساوی‌ با یکدیگراستفاده‌ شده‌ است‌. مقدار مؤثر ولتاژ خروجی‌ با چهار عامل‌ کنترلی‌ M, V1, V0و N کنترل‌می‌شود که‌ V1, V0 به‌ ترتیب‌ ولتاژهای‌ کم‌ وزیاد موردنظر، M تعداد سیکلهای‌ ولتاژ بالاتر(V1) و N تعداد کل‌ سیکهای‌ موج‌ در یک‌ دوره‌مدولاسیون‌ سیکل‌ گسسته‌ است‌. مقدار مؤثرولتاژ خروجی‌ که‌ تابعی‌ از چهار عامل‌ کنترلی‌مزبور است‌ را می‌توان‌ از رابطه‌ (1) محاسبه‌کرد:
به‌ عنوان‌ مثال‌ به‌ ازای‌ 1=02/1, V0=V1،2=M، 3=N، تعداد مؤثر ولتاژ خروجی‌ برابر013/1 محاسبه‌ می‌شود.
در عمل‌ سه‌ محدودیت‌ برای‌ استفاده‌ ازDCM وجود دارد، محدودیت‌ اول‌، تولیدزیرهارمونیکهاست‌ که‌ خود می‌تواند به‌ عنوان‌عامل‌ مشکل‌زا برای‌ سایر تجهیزات‌ شبکه‌،در صورت‌ عدول‌ از مقادیر مجاز به‌ شمار رود. مشکل‌ دوم‌، ایجاد فلیکرو یا سوسوزدن‌ وتغییر مقدار ولتاژ است‌ و محدودیت‌ سوم‌ آن‌است‌ که‌ پاسخ‌ زمانی‌ سیستمهایی‌ که‌ با DCMتغذیه‌ می‌شوند، باید در مقایسه‌ باسیکل‌ DCM به‌ اندازه‌ کافی‌ طولانی‌ باشد که‌حالتهای‌ گذرای‌ شکل‌ موج‌ برای‌ آن‌ مشکلی‌به‌ وجود نیاورد.
در مورد فلیکر یا سوسوزدن‌ لامپها،آستانه‌ تشخیص‌ سوسوزدن‌ لامپ‌ برای‌ افرادمختلف‌، متفاوت‌ است‌. از سوی‌ دیگر پاسخ‌زمانی‌ لامپهای‌ باتوان‌ کم‌ در برابر تغییر ولتاژدر مقایسه‌ با لامپها با توان‌ بالاتر، کوتاهتر است‌. یک‌ راه‌ حل‌ بررسی‌ آماری‌مشاهده‌کنندگان‌ مختلف‌ و میزان‌ تشخیص‌فلیکر توسط آنها و سپس‌ محدوده‌ای‌ در این‌زمینه‌ در جهت‌ تعیین‌ عوامل‌ DCM است‌.

ملاحظات‌ اقتصادی‌
مهمترین‌ محدودیت‌ در بکارگیری‌ عملی‌این‌ تغییردهنده‌های‌ ولتاژ، هزینه‌های‌ نسبی‌بالای‌ آن‌ است‌. برای‌ داشتن‌مقادیر نوعی‌ از هزینه‌ها، هزینه‌ مربوط به‌یک‌ تغییردهنده‌ ولتاژ برای‌ ترانسفورماتور باظرفیت‌ 30 مگاولت‌آمپر و در ولتاژ 34/5کیلوولت‌ آورده‌ شده‌ است‌. دو ستون‌ از این‌جدول‌ مربوط به‌ دو نوع‌ طراحی‌ است‌ که‌کارشناسان‌ EPRI انجام‌ داده‌اند و ستون‌بعدی‌ مربوط به‌ هزینه‌های‌ طرح‌ ارایه‌ شده‌ دراین‌ نوشتار است‌.
جمع‌بندی‌
در این‌ نوشتار یک‌ تغییردهنده‌ ولتاژالکترونیکی‌ ترانسفورماتور موسوم‌ به‌تپ‌چنجر که‌ در مقایسه‌ با انواع‌ مکانیکی‌ والکترونیکی‌ قبلی‌ مزایای‌ مختلفی‌ دارد،معرفی‌ شده‌ است‌. محدودیت‌ اصلی‌بکارگیری‌ این‌ تجهیز، هزینه‌ بالای‌ آن‌ است‌که‌ انتظار می‌رود با پیشرفت‌ ساخت‌ کلیدهای‌ الکترونیکی‌ برای‌ توانهای‌ بالا این‌ هزینه‌کاهش‌ یابد. از مزایای‌ روش‌ مطرح‌ شده‌ می‌توان‌ به‌ سرعت‌ بالا و پاسخ‌ زمانی‌ سریع‌سیستم‌ و هزینه‌ کم‌ تعمیرات‌ ونگهداری‌ اشاره‌کرد. در مقابل‌، مشکل‌ ایجاد زیر هارمونیکها وسوسوزدن‌ ولتاژ بیشتر مطرح‌ است‌ که‌ می‌توان‌با تنظیم‌ مناسب‌ عوامل‌ کنترلی‌، آن‌ را به‌مقادیر مجاز کاهش‌ داد. یک‌ نمونه‌ از تغییردهنده‌ ولتاژ فوق‌ با ظرفیت‌ کم‌ (6کیلوولت‌ آمپر) طراحی‌ و ساخته‌ شده‌ و کاهش‌هزینه‌ ناشی‌ از این‌ طرح‌ در مقایسه‌ با انواع‌قبلی‌ الکترونیک‌ بین‌ 20 تا 50 درصد بوده‌است‌. این‌ کاهش‌ هزینه‌ ناشی‌ از امکان ‌استفاه‌ از کلیدهای‌ الکترونیکی‌ با ظرفیت‌کمتر در تغییردهنده‌ ولتاژ الکترونیکی‌ است‌.



  



نوشته شده در تاریخ 90/7/28 ساعت 6:47 ع توسط مدیر وبلاگ : احسان نصیریان


تعمیرات اساسی در صنعت برق کشور به ویژه در نیروگاهها از اهمیت خاصی برخوردار است. از سوی دیگر در صنعت برق بحث چگونگی از بین بردن ضایعات در تولید و یا بهره‌گیری مجدد از آنها نیز مطرح است. در مقاله زیر که به وسیله مهندس معصومه لاجوردی کارشناس شرکت مهندسین دانشمند اصفهان به رشته تحریر درآمده است راهکارهای حذف ضایعات در تولید، موضوع نگهداری و تعمیرات و ... مورد بحث و بررسی قرار گرفته است.
در چند دهة گذشته، فلسفة نگهداری و تعمیرات بتدریج تغییر کرد و روشهای تعمیراتی دارای تغییر و تحولات زیادی شده است، به طوری که در صنعت برق و به ویژه در نیروگاهها، دارا بودن یک سیستم مناسب نگهداری و تعمیرات همگام با توسعه و افزایش حجم واحدها در حال فزونی است.
وجود یک سیستم نگهداری و تعمیرات از آن جهت الزامی است که کنترل مستمر و اطلاع کامل از اوضاع و نحوة عملکرد واحدهای عملیاتی و تأسیساتی وابسته و سرویسهای لازم را امکان پذیر می‌سازد.
در حال حاضر شرکتها و نیز واحدهای تعمیراتی در نیروگاهها، امر نگهداری و تعمیرات را بر عهده داشته و نوعی تفکیک نیروی کار در صنعت برق مشاهده می‌شود.

تعریف نگهداری و تعمیرات
براساس تعریف استاندارد DIN ،نگهداری وتعمیرات عبارت است از: تمامی فعالیتهای انجام شده در جهت حفاظت یا اعادة وضع یک جزء و یا کل سیستم موجود، به طوری که نگهداری و تعمیرات صحیح ، افزایش ارزشها ی زیر را در برداشته باشد:
1- افزایش کارآیی و بهره‌وری
2- افزایش ایمنی کار و محصول
3- افزایش طول عمر دستگاهها و تجهیزات و جلوگیری از فرسودگی آنها
4- کاهش ساعات توقف کار
5- کاهش هزینه‌های بهره‌برداری
6- کاهش مصرف قطعات یدکی
7- پیش‌بینی میزان و زمان مصرف قطعات
8- بازسازی مصرف مجدد قطعات
9- تأمین کیفیت مناسب کار یا محصول تولیدی

هدف تعمیرات (Maintenance Target)
هدف تعمیرات عبارت است از : طولانی کردن عمر کارخانه با حداقل هزینه و بیشترین بهره‌وری (طول عمر از زمان نصب ماشین‌آلات در طول زمان تولید تعریف می‌شود.)

وظایف‌تعمیرات (Maintenance Responsibility)
جهت دستیابی به هدف ذکر شده سه وظیفة عمده به شرح زیر بر عهدة تعمیرات قرار می‌گیرد:
1- تنظیم و بهینه‌سازی
2- جلوگیری از استهلاک
3- موقع بازسازی و جایگزینی

انواع تعمیرات
انواع تعمیرات مطابق دیاگرام نشان داده می‌شود که شامل موارد زیر است:
1) تعمیرات اصلاحی (روتین): این تعمیرات شامل نقایص جزئی و غیرقابل پیش‌بینی بوده که در زمان بهره‌برداری عادی قابل رفع است و در صورت نیاز به توقف اجرای کار در ردیف تعمیرات دوره‌ای قرار می‌گیرد و توسط پیمانکار انجام می‌شود. کارکنان مورد نیاز در این بخش با توجه به آمار درخواستهای تعمیرات نیروگاهها بیش از 10 نفر در دوره‌های کارشناسی و تکنسینی نیستند.
2) تعمیرات ادواری: از این تعمیرات می‌توان تا برقراری کامل سیستم به صورت هوشمند استفاده کرد. این تعمیرات براساس دستورالعملهای سازنده و تجربیات نیروگاه به صورت دوره‌ای در زمان بهره ‌برداری عادی و یا توقف واحد انجام می‌شود. این سیستم برای سهولت برنامه‌ریزی و کنترل ، قابل مکانیزه شدن است. کارکنان مورد نیاز در این بخش براساس ماهیت کار تعیین می‌شود.
3) تعمیرات هوشمند: در این تعمیرات با استفاده از سیستمهای مانیتورینگ و سیستم‌های تحلیل‌کننده، رفتار ماشین تحت نظارت مداوم قرار گرفته و در صورت نزدیکی به محدودة غیرمجاز بهره‌برداری، هشدار و سپس فرمان توقف صادر خواهد شد. کارکنان مورد نیاز این بخش کمتر از نوع ادواری است.

روشهای نگهداری و تعمیرات
در طی چند دهة اخیر راهکارهای گوناگونی در زمینه بهبود و ارتقاء نت مورد استفاده قرار گرفته است که در ادامه ، اهم آنها به اختصار مورد بررسی قرار خواهد گرفت:
تعمیرات اضطراری (رفع خرابی): در این نگرش که در دهة 1930 مطرح بود بر ایجاد سیستم‌های با تخصص بالد و آماده نگهداشتن آنها برای رفع نواقص ایجاد شده در تجهیزات استوار بود و تمام هم گروه تعمیراتی بر این بود که از یک طرف تجهیزات و ماشین آلات از کار افتاده را تعمیر کرده و به بهره‌برداری برسانند و از طرف دیگرابزار مورد نیاز برای انجام کار را به طور صحیح پیش‌بینی کند.
نگهداری و تعمیرات پیشگیرانه: این روش شامل تمامی اقدامات و خدماتی است که توسط کارکنان جهت حفظ و نگهداری سیستم با تجهیزات از نظر ایمنی و افزایش قابلیت از طریق بازدیدها و بازرسی‌های سیستماتیک، کشف و پیدا کردن اشکالات، روغنکاری، تمیزکاری و تعمیرات دوره‌ای با زمانهای ثابت از پیش تعیین شده انجام می‌پذیرد و شامل مواد زیر است:
بازرسی‌های فنی که شامل موارد زیر است:
ارائه سرویس مانند : تنظیم، روغنکاری و تمیزکاری
تعویض قطعات قبل از ایجاد فرسودگی در آنها
تعمیر کلی تجهیزات در فواصل زمانی مشخص

تعمیرات پیشگیرانه بر اساس شرایط فنی
در روش تعمیرات پیشگیرانه بر مبنای بروز علائم ، خرابی‌های مهم در یک دستگاه که توسط ایجاد تغییرات در پارامتر کنترل‌کننده دستگاه؛ شرایط و یا عملکرد آن مشخص می‌شود، مورد عمل قرار می‌گیرد، همچنین نتایج حاصل از یک تغییر قابل اندازه‌گیری به طور دائمی یا دوره‌ای صورت می‌پذیرد. کنترل شرایط کارکرد دستگاه برای برنامه‌ریزی نگهداری و تعمیرات در دو وضعیت در حین کار و در زمان توقف دستگاه انجام می‌شود که در زیر به بعضی از روشهای مربوط به هر دو حالت اشاره می‌شود:
برخی از روشهای کنترل در حین کار که شامل کنترل درجه حرارت توسط ترمومترها، ترموکوپلها، ترموستاتها و ...، کنترل روغن، ارتعاش و صدا است.
برخی از روشهای کنترل در زمان توقف دستگاه نیز شامل: روش‌های سمعی و بصری توسط بروسکوپها، اینتروسکوپها، تارهای نوری، انجام تستهای غیرمخرب به منظور ردیابی ترکها و تعمیرات با مرکزیت قابلیت ‌اطمینان (R.C.M.) است.
(Reliability Centered Maintenace)
کاربرد این روش به هنگام در معرض خطر قرارگرفتن سلامتی و ایمنی عمومی، مخصوصاً در صنایع هواپیمایی، تأسیسات هسته‌ای، مخازن نفت، میدانهای نفتی و واحدهای تولید شیمیایی است و در آن به مقدار زیاد از تکنیکهای آماری و ریاضی برای پیشگویی قابلیت اطمینان استفاده می‌شود.
در این روش هدف اصلی حفظ قابلیت اطمینان تجهیزات در حداکثر مقدار خود توأم با اقتصادی کردن دوره عمر کل کارخانه بوده و فعالیتهای نگهداری و تعمیرات به صورت پیشگیرانه و با استفاده از سه شیوة ذیل صورت می‌پذیرد.
تعویض بعضی از قطعات قبل از ایجاد نقص و بروز اشکال در وظایف آنها در طی دوره‌های زمانی معین از بهره‌برداری از پیش تعیین شده
Hard Time Replacement (H.T.R.)
نگهداری و تعمیرات تجهیزات که بروز نقص در آنها در آینده براساس بازرسی‌های دوره‌ای و ارزیابی نتایج از قبل قابل تشخیص است
Preventive Maintenance (P.M.)
نظارت مداوم بر وضعیت کارکرد تجهیزات برای تشخیص عیوب آنی آنها قبل از بروز نقص در آنها و جلوگیری از وقوع عیب
Condition Monitoring (C.M.)

تعمیرات جامع بهره‌ور (T.P.M.)
(Total Productive Maintenance)
این روش در برگیرندة مفهوم نوینی برای نگهداری و تعمیرات واحدها و تجهیزات است و تلفیق دقیقی از مفاهیم و راهکارهای بهبود بهره‌وری است.
لفظ فراگیر در عبارت نگهداری و تعمیرات بهره‌ور فراگیر درسه حوزة زیر قابل تعریف است :
این سه حوزه اثر بخشی فراگیر (توسعة راندمان)، پیشگیری فراگیر (اجرای نگهداری و تعمیرات پیشگیرانه جامع (P.M.) ) و همکاری فراگیر که شامل انجام فعالیتهای نگهداری و تعمیرات به صورت مستقل توسط پرسنل بهره‌بردار است.)
در این روش تعمیرات روزانه معمولی، چک‌نمودها، تنظیم‌های کوچک و تعویض قطعات کوچک از وظایف بهره‌برداربوده وتعمیرات اساسی و رفع نقص‌های کلی به وسیلة نیروی تعمیراتی و با کمک بهره‌بردار انجام می‌گیرد.
به طور کلی در روش نگهداری و تعمیرات پیشگیرانه (P.M.) بر ایجاد یک سیستم برنامه‌ریزی نگهداری و تعمیرات تأکید می‌شود، در صورتی که در روش(T.P.M.) مفاهیم عمیق‌تری در مورد بازنگری فعالیتهای نگهداری و تعمیرات، مشارکت، بهبود مستمر و بهبود شاخص ارزیابی اثربخشی تجهیزات مدنظر است.

مشکلات موجود نیروگاهها
با توجه به عدم برقراری سیستم نگهداری و تعمیرات پیشگیرانه در اکثر نیروگاههای کشور بجاست که به برخی از موانع موجود در راه استقرار (P.M.) در نیروگاهها اشاره شود:
عدم توجه و آشنایی مدیران به اهمیت و نقش فعالیتهای تعمیرات و نگهداری پیشگیرانه و عدم پشتیبانی همه جانبه در زمینه پیاده‌سازی سیستم از جمله مسایل است. همچنین درگیر بودن مسوولان با مشکلات روزمره در مورد نقص‌های اضطراری، در اختیار نداشتن ابزارهای مناسب و عدم وجود سیستم مناسب جهت تأمین بازخورهای اطلاعاتی به منظور کمک به فعالیتهای برنامه‌ریزی و سازماندهی و کنترل کارهای تعمیراتی از دیگر مشکلات موجود است.
ضمناً غالب بودن تفکر درمان به جای پیشگیری در روحیة کارکنان تعمیراتی نبود انگیزه در کارکنان تعمیراتی و عدم وجود سیستم ارزیابی و کارانه مناسب جزو مسایل به شمار می‌آید.
تفکر پرسنل تعمیراتی نسبت به فعالیتهای (P.M.) به عنوان کارهای اضافی، ضعف عملکرد بخش مهندسی و برنامه‌ریزی برای تدوین و پیگیری‌ کارها نیز از دیگر مشکلات را تشکیل می‌دهد.
آشنانبودن کارکنان بهره‌برداری و مشارکت آنها در اجرای فعالیتهای (P.M.)، کمبود و نبود منابع برای تهیه مستندات لازم و تعریف فعالیتها نیز جزو مسایل است.
اولویت‌بندی نکردن تجهیزات و فعالیتهای تعریف شده و وجود مشکل زمانبندی در اجرای فعالیتها و عدم وجود یک سیستم مکانیزه متناسب با نیازهای نیروگاهی در زمینه کمک به برنامه‌ریزی جزو دیگر مسایل است.

ضایعات ششگانه موجود در تولید و راهکارهای حذف آنها
در برنامه‌ریزی نت بهره‌ور فراگیر توجه خاصی به عیب‌یابی ضایعات، قبل از برنامه‌ریزی اجرایی نت وجود دارد. بروز بعضی از ضایعات به شرح زیر باعث کاهش اثر بخشی سیستم می‌شود.
این ضایعات شامل خرابی‌های اضطراری، کاهش زمان کار مفید ناشی از آماده‌سازی و تنظیم تجهیزات و کاهش زمان کار مفید ناشی از کار بدون تولید و توقف‌های در ضمن کار است.
افت سرعت، ضایعات تولید و دوباره کاری و ضایعات راه‌اندازی از دیگر مسایل را در این ارتباط تشکیل می‌دهند.

کاهش ضایعات
به منظور کاهش اثرات ضایعات مزبور در اثر بخشی باید به نحوة مقابله با معضلات مزبور توجه زیاد کرد. به طور کل در یک سیستم ، معضلات به دو گروه اتفاقی و مزمن تقسیم می‌شوند.
ضایعات اتفاقی به طور ناگهانی بروز کرده و شناسایی عوامل ایجاد آنها مشکل نیست و بازگشت سیستم به حالت اولیه به عنوان یک حرکت اصلاحی مورد توجه است، اما ضایعات مزمن ناشی از نوعی شرایط زیانبار و مستمر است که رفع آنها نیازمند تغییر اصولی در وضعیتها است. در بسیاری از موارد معضلات مزمن از جمله عوامل ایجاد ضایعات ششگانه در تولید هستند و به دلیل عادت سیستم به این معضلات ، شناسایی و حذف آنها دشوار است.
بنابراین به منظور حذف ضایعات مزمن که اثر بخشی سیستم را کاهش می‌دهند، می‌توان توصیه‌هایی را مدنظر داشت:
حذف خرابی‌های اضطراری، بهبود آماده‌سازی و تنظیم تعمیرات، کاهش زمانهای حرکت بدون تولید، بهبود سرعت ماشین و کاستن اشکالات کیفیتی از جمله این توصیه‌ها است.
از طرف دیگر به منظور افزایش اثر بخشی و نیز کاهش ضایعات ششگانه، اقداماتی باید به وسیله کارکنان بهره‌بردار صورت پذیرد که شامل موارد زیر است:
تمیزکاری ، روانکاری، آچارکشی، بررسی روزانه فرسایش، سرویس‌های ساده، بازرسی‌های دوره‌ای و تشخیص حالتهای غیرطبیعی از جمله اقداماتی است که کارکنان باید انجام دهند.

نتیجه‌گیری
جهت دستیابی به بهره‌برداری هر چه بهتر در نیروگاهها با استقرار تعمیرات بهره‌ور فراگیر، بعضی از توصیه‌ها به شرح زیر ارائه می‌شود
استقرار سیستم مشارکت کارکنان به صورت فراگیر در نیروگاه و ذخیره‌سازی، تجزیه و تحلیل سوابق تجهیزات به منظور تشخیص تجهیزاتی که دارای نواقص مزمن هستند و ریشه‌یابی علل بروز تکرار نواقص جزو توصیه‌های مزبور است.
ایجاد زمینه همکاری و تفاهم میان پرسنل تعمیرات و پرسنل بهره‌برداری، ارتقای سطح دانش و تخصص پرسنل بهره‌برداری به منظور کسب توانایی در انجام بعضی از فعالیتهای نگهداری و تعمیرات از قبیل: تمیزکاری، تعویض فیلترهای هوا یا آب و ... نیز جزو این مسایل است.
برگزاری دوره‌های آموزشی برای تمامی کارکنان، شناسایی منابع بروز تلفات و ضایعات در نیروگاهها به ویژه ضایعات ششگانه مطرح شده و اتخاذ روشهای مناسب برای حذف آنها نیز باید انجام شود.
تعریف اهداف مورد انتظار از طرف مدیریت از قبیل: درصد قابل قبول خرابیها و درصد مورد انتظار توقف‌های ناخواسته واحد پس از استقرار سیستم و جلوگیری از فرسودگی تجهیزات با اجرای تنظیم فعالیتهای (P.M.) نیز باید به انجام برسد.



  





طراحی پوسته توسط تیم پارسی بلاگ